971 resultados para equação de Hamilton-Jacobi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collection documents the lives Sarah Simon Jacobi (1857-1943), Freda Moritz Jacobi (1886-1939), Alice Jacobi Schlossberg (1912-1987) and Deda Schlossberg Miller (1940- ), through diaries, baby books, photographs, and correspondence. Also included in the collection are a silver card case, a silver coffee pot and creamer, and an etching of the Jacobi family home. For further information on these objects see the museum curator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach to Hamilton's theory of turns for the groups SO(3) and SU(2) which renders their properties, in particular their composition law, nearly trivial and immediately evident upon inspection. We show that the entire construction can be based on binary rotations rather than mirror reflections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The domination and Hamilton circuit problems are of interest both in algorithm design and complexity theory. The domination problem has applications in facility location and the Hamilton circuit problem has applications in routing problems in communications and operations research.The problem of deciding if G has a dominating set of cardinality at most k, and the problem of determining if G has a Hamilton circuit are NP-Complete. Polynomial time algorithms are, however, available for a large number of restricted classes. A motivation for the study of these algorithms is that they not only give insight into the characterization of these classes but also require a variety of algorithmic techniques and data structures. So the search for efficient algorithms, for these problems in many classes still continues.A class of perfect graphs which is practically important and mathematically interesting is the class of permutation graphs. The domination problem is polynomial time solvable on permutation graphs. Algorithms that are already available are of time complexity O(n2) or more, and space complexity O(n2) on these graphs. The Hamilton circuit problem is open for this class.We present a simple O(n) time and O(n) space algorithm for the domination problem on permutation graphs. Unlike the existing algorithms, we use the concept of geometric representation of permutation graphs. Further, exploiting this geometric notion, we develop an O(n2) time and O(n) space algorithm for the Hamilton circuit problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We affirmatively answer a question due to S. Bocherer concerning the feasibility of removing one differential operator from the standard collection of m + 1 of them used to embed the space of Jacobi forms of weight 2 and index m into several pieces of elliptic modular forms. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: La leyenda franca del descubrimiento de los restos de Santiago plantea una serie de problemas que trascienden la historia del Camino en sí mismo. Desde hace más de quince años he trabajado sobre los vínculos culturales entre Hispania y Galia. Coincidí con la tesis de Rucquoi, sobre las rutas del saber y retrotraje su hipótesis de trabajo hasta el siglo VIII. En este artículo intento exponer mi hipótesis sobre la posible relación entre las reliquias compostelanas y la Sacralización del Imperio Alemán durante el reinado de Federico I Barbarroja.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

在海洋水域,界面波对大尺度变化流的作用是一种典型的分层流动现象。考虑一不可压缩、无黏的分层势流运动,建立了一个在非平整运动海底上的n层流体演化系统,并对其进行了Hamilton描述。每层流体具有各自的常密度、均匀流水平速度,其厚度由未扰动和扰动部分构成。相对于顶层流体的自由表面,刚性、运动的海底具有一般地形变化特征。在明确指出n层流体运动的控制方程和各层交界面上的运动学、动力学边界条件(包含各层交界面上张力效应)后,对该分层动力系统进行了Hamilton构造,即给出其正则方程和其下述的正则变量:各交界面位移和各交界面上的动量势密度差。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uma análise utilizando a série de Taylor é apresentada para se estimar a priori os erros envolvidos na solução numérica da equação de advecção unidimensional com termo fonte, através do Método dos Volumes Finitos em uma malha do tipo uniforme e uma malha não uniforme. Também faz-se um estudo a posteriori para verificar a magnitude do erro de discretização e corroborar os resultados obtidos através da análise a priori. Por meio da técnica de solução manufaturada tem-se uma solução analítica para o problema, a qual facilita a análise dos resultados numéricos encontrados, e estuda-se ainda a influência das funções de interpolação UDS e CDS e do parâmetro u na solução numérica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O uso de técnicas com o funcional de Tikhonov em processamento de imagens tem sido amplamente usado nos últimos anos. A ideia básica nesse processo é modificar uma imagem inicial via equação de convolução e encontrar um parâmetro que minimize esse funcional afim de obter uma aproximação da imagem original. Porém, um problema típico neste método consiste na seleção do parâmetro de regularização adequado para o compromisso entre a acurácia e a estabilidade da solução. Um método desenvolvido por pesquisadores do IPRJ e UFRJ, atuantes na área de problemas inversos, consiste em minimizar um funcional de resíduos através do parâmetro de regularização de Tikhonov. Uma estratégia que emprega a busca iterativa deste parâmetro visando obter um valor mínimo para o funcional na iteração seguinte foi adotada recentemente em um algoritmo serial de restauração. Porém, o custo computacional é um fator problema encontrado ao empregar o método iterativo de busca. Com esta abordagem, neste trabalho é feita uma implementação em linguagem C++ que emprega técnicas de computação paralela usando MPI (Message Passing Interface) para a estratégia de minimização do funcional com o método de busca iterativa, reduzindo assim, o tempo de execução requerido pelo algoritmo. Uma versão modificada do método de Jacobi é considerada em duas versões do algoritmo, uma serial e outra em paralelo. Este algoritmo é adequado para implementação paralela por não possuir dependências de dados como de Gauss-Seidel que também é mostrado a convergir. Como indicador de desempenho para avaliação do algoritmo de restauração, além das medidas tradicionais, uma nova métrica que se baseia em critérios subjetivos denominada IWMSE (Information Weighted Mean Square Error) é empregada. Essas métricas foram introduzidas no programa serial de processamento de imagens e permitem fazer a análise da restauração a cada passo de iteração. Os resultados obtidos através das duas versões possibilitou verificar a aceleração e a eficiência da implementação paralela. A método de paralelismo apresentou resultados satisfatórios em um menor tempo de processamento e com desempenho aceitável.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensos estudos realizados nas últimas décadas sobre a propagação de ondas ultrassônicas em sólidos levaram ao desenvolvimento de técnicas não destrutivas para a avaliação da segurança e integridade de estruturas e componentes industriais. O interesse na aplicação de técnicas ultrassônicas para medição de tensões aplicadas e residuais decorre da mudança mensurável da velocidade das ondas ultrassônicas na presença de um campo de tensões, fenômeno conhecido como efeito acustoelástico. Uma teoria de acustoelasticidade fornece um meio atrativo e não destrutivo de medir a tensão média ao longo do caminho percorrido pela onda. O estudo da propagação das ondas ultrassônicas em meios homogêneos anisotrópicos sob tensão conduz a um problema não linear de autovalores dado pela equação de Christoffel generalizada. A característica não linear deste problema decorre da interdependência entre as constantes elásticas efetivas do material e as tensões atuantes. A medição experimental de tensões por técnicas ultrassônicas é um problema inverso da acustoelasticidade. Esta dissertação apresenta a implementação de um algoritmo numérico, baseado no método proposto por Degtyar e Rokhlin, para solução do problema inverso da acustoelasticidade em sólidos ortotrópicos sujeitos a um estado plano de tensões. A solução da equação de Christoffel generalizada apresenta dificuldades de natureza numérica e prática. A estabilidade e a precisão do algoritmo desenvolvido, bem como a influência das incertezas na medição experimental das velocidades das ondas ultrassônicas, foram então investigadas. Dados sintéticos para as velocidades das ondas ultrassônicas de incidência oblíqua em uma placa sujeita a um estado plano de tensões foram gerados pela solução direta da equação de Christoffel generalizada para ilustrar a aplicação do algoritmo desenvolvido. O objetivo maior desta dissertação é a disponibilização de uma nova ferramenta de cálculo para suporte às atividades experimentais de medição de tensões por ultrassom no país.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho trata do escoamento bifásico em meios porosos heterogêneos de natureza fractal, onde os fluidos são considerados imiscíveis. Os meios porosos são modelados pela equação de Kozeny-Carman Generalizada (KCG), a qual relaciona a porosidade com a permeabilidade do meio através de uma nova lei de potência. Esta equação proposta por nós é capaz de generalizar diferentes modelos existentes na literatura e, portanto, é de uso mais geral. O simulador numérico desenvolvido aqui emprega métodos de diferenças finitas. A evolução temporal é baseada em um esquema de separação de operadores que segue a estratégia clássica chamada de IMPES. Assim, o campo de pressão é calculado implicitamente, enquanto que a equação da saturação da fase molhante é resolvida explicitamente em cada nível de tempo. O método de otimização denominado de DFSANE é utilizado para resolver a equação da pressão. Enfatizamos que o DFSANE nunca foi usado antes no contexto de simulação de reservatórios. Portanto, o seu uso aqui é sem precedentes. Para minimizar difusões numéricas, a equação da saturação é discretizada por um esquema do tipo "upwind", comumente empregado em simuladores numéricos para a recuperação de petróleo, o qual é resolvido explicitamente pelo método Runge-Kutta de quarta ordem. Os resultados das simulações são bastante satisfatórios. De fato, tais resultados mostram que o modelo KCG é capaz de gerar meios porosos heterogêneos, cujas características permitem a captura de fenômenos físicos que, geralmente, são de difícil acesso para muitos simuladores em diferenças finitas clássicas, como o chamado fenômeno de dedilhamento, que ocorre quando a razão de mobilidade (entre as fases fluidas) assume valores adversos. Em todas as simulações apresentadas aqui, consideramos que o problema imiscível é bidimensional, sendo, portanto, o meio poroso caracterizado por campos de permeabilidade e de porosidade definidos em regiões Euclideanas. No entanto, a teoria abordada neste trabalho não impõe restrições para sua aplicação aos problemas tridimensionais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta dissertação, são apresentados os seguintes modelos matemáticos de transporte de nêutrons: a equação linearizada de Boltzmann e a equação da difusão de nêutrons monoenergéticos em meios não-multiplicativos. Com o objetivo de determinar o período fluxo escalar de nêutrons, é descrito um método espectronodal que gera soluções numéricas para o problema de difusão em geometria planar de fonte fixa, que são livres de erros de truncamento espacial, e que conjugado com uma técnica de reconstrução espacial intranodal gera o perfil detalhado da solução. A fim de obter o valor aproximado do fluxo angular de nêutrons em um determinado ponto do domínio e em uma determinada direção de migração, descreve-se também um método de reconstrução angular baseado na solução analítica da equação unidimensional de transporte de nêutrons monoenergéticos com espalhamento linearmente anisotrópico com aproximação sintética de difusão nos termos de fonte por espalhamento. O código computacional desenvolvido nesta dissertação foi implementado na plataforma livre Scilab, e para ilustrar a eficiência do código criado,resultados numéricos obtidos para três problemas-modelos são apresentados

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, será considerado um problema de controle ótimo quadrático para a equação do calor em domínios retangulares com condição de fronteira do tipo Dirichlet é nos quais, a função de controle (dependente apenas no tempo) constitui um termo de fonte. Uma caracterização da solução ótima é obtida na forma de uma equação linear em um espaço de funções reais definidas no intervalo de tempo considerado. Em seguida, utiliza-se uma sequência de projeções em subespaços de dimensão finita para obter aproximações para o controle ótimo, o cada uma das quais pode ser gerada por um sistema linear de dimensão finita. A sequência de soluções aproximadas assim obtidas converge para a solução ótima do problema original. Finalmente, são apresentados resultados numéricos para domínios espaciais de dimensão 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apresenta-se uma abordagemnumérica para ummodelo que descreve a formação de padrões por sputtering iônico na superfície de ummaterial. Esse processo é responsável pela formação de padrões inesperadamente organizados, como ondulações, nanopontos e filas hexagonais de nanoburacos. Uma análise numérica de padrões preexistentes é proposta para investigar a dinâmica na superfície, baseada em ummodelo resumido em uma equação anisotrópica amortecida de Kuramoto-Sivashinsky, em uma superfície bidimensional com condições de contorno periódicas. Apesar de determinística, seu caráter altamente não-linear fornece uma rica gama de resultados, sendo possível descrever acuradamente diferentes padrões. Umesquema semi implícito de diferenças finitas com fatoração no tempo é aplicado na discretização da equação governante. Simulações foram realizadas com coeficientes realísticos relacionados aos parâmetros físicos (anisotropias, orientação do feixe, difusão). A estabilidade do esquema numérico foi analisada por testes de passo de tempo e espaçamento de malha, enquanto a verificação do mesmo foi realizada pelo Método das Soluções Manufaturadas. Ondulações e padrões hexagonais foram obtidos a partir de condições iniciais monomodais para determinados valores do coeficiente de amortecimento, enquanto caos espaço-temporal apareceu para valores inferiores. Os efeitos anisotrópicos na formação de padrões foramestudados, variando o ângulo de incidência.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, a partição iônica e o potencial de membrana em um eritrócito são analisados via equação de Poisson-Boltzmann modificada, considerando as interações não eletrostáticas presentes entre os íons e macromoléculas, assim como, o potencial β. Este potencial é atribuído à diferença de potencial químico de referência entre os meios intracelular e extracelular e ao transporte ativo de íons. O potencial de Gibbs-Donnan via equação de Poisson-Boltzmann na presença de carga fixa em um sistema contendo uma membrana semipermeável também é estudado. O método de aproximação paraboloide em elementos finitos em um sistema estacionário e unidimensionalé aplicado para resolver a equação de Poisson-Boltzmann em coordenadas cartesianas e esféricas. O parâmetro de dispersão relativo às interações não eletrostáticas écalculado via teoria de Lifshitz. Os resultados em relação ao potencial de Gibbs-Donnan mostram-se adequados, podendo ser calculado pela equação de Poisson-Boltzmann. No sistema contendo um eritrócito, quando o potencial β é considerado igual a zero, não se verifica a diferença iônica observada experimentalmente entre os meios intracelular e extracelular. Dessa forma, os potenciais não eletrostáticos calculados via teoria de Lifshitz têm apenas uma pequena influência no que se refere à alta concentração de íon K+ no meio intracelular em relação ao íon Na+