972 resultados para epsilon toxin
Resumo:
The synthesis and catalytic activity of lanthanide monoamido complexes supported by a beta-diketiminate ligand are described. Donor solvents, such as DME, can cleave the chloro bridges of the dinuclear beta-diketiminate ytterbium dichloride {[(DIPPh)(2)nacnac]YbCl(mu-Cl)(3)Yb[(DIPPh)(2)nacnac](THF)} (1) [(DIPPh)(2)nacnac = N,N-diisopropylphenyl-2,4-pentanediimine anion] to produce the monomeric complex [(DIPPh)(2)nacnac]YbCl2(DME) (2) in high isolated yield. Complex 2 is a useful precursor for the synthesis of beta-diketiminate-ytterbium monoamido derivatives. Reaction of complex 2 with 1 equiv of LiNPr2i in THF at room temperature, after crystallization in THF/toluene mixed solvent, gave the anionic beta-diketiminate-ytterbium amido complex [(DIPPh)(2)nacnac]Yb(NPr2i)(mu-Cl)(2)Li(THF)(2) (3), while similar reaction of complex 2 with LiNPh2 produced the neutral complex [(DIPPh)(2)nacnac]Yb(NPh2)Cl(THF) (4). Recrystallization of complex 3 from toluene solution at elevated temperature led to the neutral beta-diketiminate-lanthanide amido complex [{(DIPPh)(2)nacnac}Yb(NPr2i)(mu-Cl)](2) (5). The reaction medium has a significant effect on the outcome of the reaction.
Resumo:
The crystallization behaviors of the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer with the PEG weight fraction of 0.50 (PEG(50)-PCL50) was studied by DSC, WAXD, SAXS, and FTIR. A superposed melting point at 58.5 degrees C and a superposed crystallization temperature at 35.4 degrees C were obtained from the DSC profiles running at 10 degrees C/min, whereas the temperature-dependent FTIR measurements during cooling from the melt at 0.2 degrees C/min showed that the PCL crystals formed starting at 48 degrees C while the PEG crystals started at 45 degrees C. The PEG and PCL blocks of the copolymer crystallized separately and formed alternating lamella regions according to the WAXD and SAXS results. The crystal growth of the diblock copolymer was observed by polarized optical microscope (POM). An interesting morphology of the concentric spherulites developed through a unique crystallization behavior. The concentric spherulites were analyzed by in situ microbeam FTIR, and it was determined that the morphologies of the inner and outer portions were mainly determined by the PCL and PEG spherulites, respectively. However, the compositions of the inner and outer portions were equal in the analysis by microbeam FTIR.
Resumo:
The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (M-n = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae.
Resumo:
The quasiliving characteristics of the ringopening polymerization of epsilon-caprolactone (CL) catalyzed by an organic amino calcium were demonstrated. Taking advantage of this feature, we synthesized a series of poly (F-caprolactone) (PCL)-poly(L-lactide) (PLA) cliblock copolymers with the sequential addition of the monomers CL and L-lactide. The block structure was confirmed by H-1-NMR, C-13-NMR, and gel permeation chromatography analysis. The crystalline structure of the copolymers was investigated by differential scanning calorimetry and wide-angle X-ray diffraction analysis. When the molecular weight of the PLA block was high enough, phase separation took place in the block copolymer to form PCL and PLA domains, respectively.
Resumo:
The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.
Resumo:
The surface morphology and crystallization behavior of a weakly segregated symmetric diblock copolymer, poly(styrene-b-6-caprolactone) (PS-b-PCL), in thin films were investigated by optical microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). When the samples were annealed in the molten state, surface-induced ordering, that is, relief structures with uniform thickness or droplets in the adsorbed monolayer, were observed depending on the annealing temperature. The polar PCL block preferred to wet the surface of a silicon wafer, while the PS block wet the air interface. This asymmetric wetting behavior led to the adsorbed monolayer with a PCL block layer having a thickness of around 4.0 nm. The crystallization of PCL blocks could overwhelm the microphase-separated structure because of the weak segregation. In situ observation of crystal growth indicated that the nucleation process preferred to occur at the edge of the thick parts of the film, that is, the relief structures or droplets. The crystal growth rate was presented by the time dependence of the distance between the tip of crystal clusters and the edge. At 22 and 17 degreesC, the average crystal growth rates were 55 +/- 10 and 18 +/- 4 nm/min, respectively.
Resumo:
Poly (6-caprolactone) (PCL) and poly (L-lactide) (PLA) were prepared by ring-opening Polymerization catalyzed by organic amino calcium catalysts (Ca/PO and Ca/EO) which were prepared by reacting calcium ammoniate Ca(NH3)(6) with propylene oxide and ethylene oxide, respectively. The catalysts exhibited high activity and the ring-opening polymerization behaved a quasi-living characteristic. Based on the Fr-IR spectra and the calcium contents of the catalysts, and based on the H-1 NMR end-group analysis of the low molecular weight PCL prepared using catalysts Ca/PO and Ca/EO, it was proposed that the catalysts have the structure of NH2-Ca-O-CH(CH3)(2) and NH2-CaO-CH2CH3 for Ca/PO and Ca/EO, respectively. The ring-opening polymerization of CL and LA follows a coordination-insertion mechanism and the active site is the Ca-O bond.
Resumo:
A biodegradable two block copolymer, poly(epsilon-caprolactone)-b- poly(gamma-benzyl-L-glutamic acid) (PCL-PBLG) was synthesized successfully by ring-opening polymerization of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with aminophenyl-terminated PCL as a macroinitiator. The aminophenethoxyl-terminated PCL was prepared via hydrogenation of a 4-nitrophenethoxyl-teminated PCL, which was novelly obtained from the polymerization of c-caprolactone (CL) initiated by amino calcium 4-nitrobenzoxide. The structures of the block copolymer and its precursors from the initial step of PCL were confirmed and investigated by H-1 NMR, FT-IR, GPC, and FT-ICRMS analyses and DSC measurements.
Resumo:
To synthesize the copolyester of poly(beta-hydroxybutyrate) (PHB) and poly(epsilon-caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by C-13 NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB.
Resumo:
The transesterification of poly(beta-hydroxybutyrate) (PHB) and poly(epsilon-caprolactone) (PCL) was carried out by using stannous octoate as catalyzer in liquid phase. The effects of reaction conditions on the transesterification, including reaction temperature, reaction time and catalyzer content, were investigated. The sequence distribution, crystallization behavior and thermal stability of PHB-co-PCL copolyesters were studied by C-13-NMR, FTIR, DSC, WAXD and TGA. The results showed that the transesterification of PHB with PCL was confirmed to produce a block copolymer, and enhancing reaction temperature and increasing reaction time were advantageous to the transesterification. With the increase in PCL content in the block copolymer, the crystallization behavior of PHB-co-PCL copolyesters changed evidently. On the other hand, the introduction of PCL segment into PHB chains did not change its crystalline structure; moreover, thermal stability of PHB-co-PCL copolyesters was a little improved in air, comparing with that of pure PHB.
Resumo:
Water insoluble poly(epsilon-caprolactone) (PCL) was micronized into narrowly distributed stable nanoparticles. The biodegradation of such PCL nanoparticles in the presence of the enzyme, Lipase PS, was monitored by using laser light scattering because the scattering intensity is directly related to the particle concentration. The PCL and enzyme concentration dependence of the biodegradation rate supports a heterogeneous catalytic kinetics in which we have introduced an additional equilibrium between the inactive and active enzyme/substrate complexes. The initial rate equation derived on the basis of this mechanism was used to successfully explain the influence of surfactant, pH and temperature on the enzymatic biodegradation. Our results confirmed that both the adsorption and the enzymatic catalysis were important for the biodegradation of the PCL nanoparticles. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Well-defined block copolymers of L-lactide-b-epsilon-caprolactone were synthesized by sequential polymerization using a rare earth complex, Y(CF3COO)(3)/Al(iso-Bu)(3), as catalyst system. The compositions of the block copolymers could be adjusted by manipulating the feeding ratio of comonomers. The characterizations by GPC, H-1 NMR, C-13 NMR, and DSC displayed that the block copolymer, poly(epsilon-caprolactone-b-L-lactide) [P(CL-b-LLA)], had a narrow molecular weight distribution and well-controlled sequences without random placement.
Resumo:
The surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) was studied by optical microscopy, SEM, and TEM, respectively. It is interesting to find that the surface structure of the ring-banded spherulites in polymer blends PCL/SAN (90/10) is made up of the convex bands. The landscape of the convex bands on the surface has been little emphasized before. Radial fibrils are arranged on the bands. Details of the radial fibrils on the bands can be observed by TEM. The landscape of the convex bands on the surface and twisting of lamellae in the convex bands for PCL/SAN blends may be useful to explain the formation mechanism of the ring banded spherulites in polymer blends or even in homopolymers. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Blend films of poly(epsilon-caprolactone) (PCL) and poly(DL-lactide) (PDLLA) with 0.5 weight fraction of PCL were prepared by means of solution casting and their degradation behavior was studied in phosphate buffer solution containing Pseudomonas (PS) lipase. Enzymatic degradation of the blend films occurred continuously within the first 6 days and finally stopped when the film weight loss reached 50%, showing that only PCL in the blends degraded under the action of PS lipase in the buffer solution. These results indicate the selectivity of PS lipase on the promotion of degradation for PCL and PDLLA. The thermal properties and morphology of the blend films were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and scanning electron microscopy (SEM). The morphology resulting from aggregate structures of PCL in the blends was destroyed in the enzymatic degradation process, as observed by SEM. These results confirm again the enzymatic degradation of PCL in the blends in the presence of PS lipase. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A successful micronization of water-insoluble poly(epsilon-caprolactone) (PCL) into narrowly distributed nanoparticles stable in water has not only enabled us to study the enzymatic biodegradation of PCL in water at 25 degrees C by a combination of static and dynamic laser light scattering (LLS), but also to shorten the biodegradation time by a factor of more than 10(3) compared with using a thin PCL film, i.e. a 1 week conventional experiment becomes a 4 min one. The time-average scattering intensity decreased linearly. It was interesting to find that the decrease of the scattering intensity was not accompanied by a decrease of the average size of the PCL nanoparticles, indicating that the enzyme, Lipase Pseudomonas (PS), ''eats'' the PCL nanoparticles one-by-one, so that the biodegradation rate is determined mainly by the: enzyme concentration. Moreover, we found that using anionic sodium lauryl sulphate instead of cationic hexadecyltrimethylammonium bromide as surfactant in the micronization can prevent the biodegradation, suggesting that the biodegradation involves two essential steps: the adsorption of slightly negatively charged Lipase PS onto the PCL nanoparticles and the interaction between Lipase PS and PCL. (C) 1999 Elsevier Science Ltd. All rights reserved.