95 resultados para entrecasca de melancia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nematodes severely attack net melon plants under protected cultivation conditions. The objective of this research was to select rootstocks with resistance to Meloidogyne incognita and M. javanica. The experiment was carried out under greenhouse conditions from October 2010 to April 2011 in Jaboticabal, Sao Paulo state, Brazil. Thirty-three cucurbitaceous genotypes were investigated as rootstocks; melons: CNPH 01-930 (Cucumis melo var. flexuosus), CNPH 01-962, 01-963 CNPH (Cucumis melo var. conomon), cvs. Gaucho Redondo, Gaucho Comprido, Redondo Amarelo, Gulfcoast, Chilton, Bonus no. 2, Fantasy; watermelons: cv. Charleston Gray, Progenie da Coreia (Citrullus lanatus); pumpkins: cvs. Mra. Ma, Ornamental, Howden, Mammoth, Kururu, Goianinha (Cucurbita moschata); gourd: Abobora de Porco, cvs. Maranhao, Brasileirinha (Lagenaria siceraria); squash: cv. Pataca Gigante (Cucurbita maxima); cucumber: cvs. Caipira, Branco Meio Comprido, Curumim (Cucumis sativus); loofah: Metro, Semente Branca, Semente Preta (Luffa cylindrica); wax gourd (Benincasa hispida); pumpkin rootstock: Hybrid cv. Keij; snake gourd (Trichosanthes cucumerins) and musk cucumber (Sicana odorifera). To evaluate the resistance, seedlings were transplanted to pots and the root inoculated with 3,000 eggs and second stage juveniles of M. incognita and M. javanica. Fifty days after the inoculation, the plants were evaluated for nematode resistance by means of the reproduction factor. The grafting compatibility between net melon cvs. Bonus no. 2 and Fantasy and the rootstocks previously characterized as resistant were evaluated by means of 60 graftings. CNPH 01-962, CNPH 01-963 and melon 'Gaucho Redondo', were considered resistant to M. incognita. Melon 'Redondo Amarelo', watermelon 'Charleston Gray', watermelon Progenie da Coreia, Trichosanthes cucumerins were considered resistant to M. javanica. Benincasa hispida was resistant to M. javanica and M. incognita. The compatibility between net melons and resistant rootstocks was higher than 98%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The watermelon is traditionally cultivated horizontally on the ground. The cultivars of small fruits (1 to 3 kg), which reach better market prices, are also being grown in a greenhouse, where the plants are trained upward on vertical supports, with branches pruning and fruits thinning. These practices make possible an increase of the plant density, fruit quality and yield compared to the traditional growth system. The aim of this experiment was to evaluate the influence of three training heights (1.7, 2.2 and 2.7 m) and two planting densities (3.17 and 4.76 plants m-2) over the productive and qualitative characteristics of mini watermelon "Smile" cultivated in greenhouse. The pruning was done at 43, 55 and 66 days after transplanting (DAT), when the plant height reached 1.7, 2.2 and 2.7 m, respectively. The dry mass of branches, petioles, leaves and total were affected by the training height, where the highest values were obtained by the plants pruned at 2.2 and 2.7 m. Leaf area, specific leaf area and leaf area index were not affected by the height of the plants. The training height of 2.7 m raised the total yield, however, marketable yield, average fruit mass and all the quality characteristics did not differ significantly from those obtained by the training height of 2.2 m. Regarding to plant density, the best option was 4.76 plants m-2, due to the increasing of marketable yield in 37.4% without reducing the average weight of fruits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the performance of progenies from Citrullus lanatus var. lanatus (cultivated watermelons) when crossed with progenies from C. lanatus var. citroides (fodder watermelon with a historic of resistance to the nematode Meloidogyne enterolobii). The parents and their F1s were evaluated for resistance to this nematode. In the initial stages of eleven treatments, watermelon seedlings plantlets were transplanted to plastic bags of six kilograms once the first leaves developed. Ten inoculated plants with 5,200 eggs in the soil near the stem of the plant and four non-inoculated ones were used in each treatment, in a complete block design. Sixty-two days after sowing, the following characteristics were evaluated: the length of the aerial part of the plant (LAP, in m), fresh mass of the aerial part (FMAP, in g), root fresh mass (RFM, in g), egg number (EN) and reproduction factor (RF). A comparison between the averages of inoculated and non-inoculated plants was performed using Scott-Knott test at 5% and the diallelic analysis was performed using the GENES program. The morphological characteristics did not allow for the identification of the parent plants or the F1s with respect to nematode resistance, but the variables EN and RF were useful for such identification. The analyses of the general and specific combining abilities indicate highly significant effects with respect to this resistance, showing additive gene effects as well as dominance and epistatic gene effects, allowing for identification of parents and F1s that can be used in watermelon breeding programs to improve resistance to the M. enterolobii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed infections in cucurbits are frequently observed in natural conditions between viruses from the Potyvirus genus and Cucumber mosaic virus (CMV), which significantly decreases productivity. The objectives of the present study was to compare the host range of PRSV-W, WMV, and ZYMV isolates and evaluate the effects of mixed infections with CMV in zucchini plants (Cucurbita pepo L.). Host range studies comprising 23 plant species confirmed some similarities and biological differences among the isolates of PRSV-W, ZYMV, and WMV. RT-PCR confirmed the amplification of DNA fragments of the PRSV-W, WMV, and ZYMV coat protein gene (cp) and cytoplasm inclusion gene (ci). The virus interaction studies in zucchini Caserta plants indicated synergistic interactions, particularly among species from the Potyvirus genus, and some CMV interference with some virus combinations.