997 resultados para eletrodos de óxidos
Resumo:
This work reports the development of GDE for electrogeneration of H2O2 and their application in the degradation process of Reactive Blue 19 dye. GDE produced by carbon black with 20% polytetrafluoroethylene generated up to 500 mg L-1 of H2O2 through the electrolysis of acidic medium at -0.8 V vs Ag/AgCl. Reactive Blue 19 dye was degraded most efficiently with H2O2 electrogenerated in the presence of Fe(II) ions, leading to removal of 95% of the original color and 39% of TOC at -0.8 V vs Ag/AgCl.
Resumo:
A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more specifically hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and maghemite (γ-Fe2O3), in heterogeneous catalysis.
Resumo:
In this work we report a systematic study on the influence of the chemical nature of silver precursors on the formation of glass-ceramics from oxide glasses. Thermal, structural and optical properties were analyzed as a function of the glass composition. Controlled crystallization was achieved by thermal treatment of the samples above glass transition. The influence of time of treatment on both nanoparticle growth and optical properties of the samples was studied by transmission electron microscopy and UV-Vis spectroscopy, respectively. Results showed that only glasses containing AgCl and AgNO3 led to glass-ceramics growth after thermal treatment.
Resumo:
This work describes three C8-stationary phases for high performance liquid chromatography based on silica metallized with ZrO2, TiO2 or Al2O3 layers, having poly(methyloctylsiloxane) immobilized onto their surfaces. The stationary phases were characterized using XRF, XAS, FTIR, SEM and elemental analysis to determine the physical characteristics of the oxide and polysiloxane layers formed on the surfaces and chromatographically to evaluate the separation parameters. The results show the changes on the silica surface and allowed proposing a structure for the oxide layer, being observed tetrahedral and octahedral structures, what is completely new in the literature. The formation of a homogeneous layer of metallic oxide (TiO2 and ZrO2) was observed on the silica. The C8-titanized and C8-aluminized stationary phases presented good chromatographic performances, with good values of asymmetry and efficiency. All stationary phase presented few loss of the polymeric layer after the HPLC, indicating that this layer is well attached on the metalized support.
Resumo:
A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni - MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO4)2.H2O) and lanthanum sulfate (La2(SO4)3.H2O) as the major recovered components. Iron was recovered as Fe(OH)3 and FeO. Manganese was obtained as Mn3O4.The recovered Ni(OH)2 and Co(OH)2 were subsequently used to synthesize LiCoO2, LiNiO2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques.
Resumo:
Cobalt or iron oxides supported or not on zeolite Hbeta were prepared and evaluated in the reduction reaction of NO by CO in presence of O2, SO2 or H2O. XRD results evidenced the Hbeta structure and the formation of Co3O4 and Fe2O3. TPR-H2 analysis showed complete reduction of cobalt oxide at lower temperatures than for iron oxide. The catalysts are quite active and the activity depends on the reaction temperature. The highest conversions rates were observed for pure iron oxide, which can be a relatively low cost catalyst for reduction of NO by CO, with high selectivity towards the N2 formation.
Resumo:
This review deals with the basis and novel trends in electrochromism, describing the basic aspects and methodologies employed for the construction and analyses of different modified electrodes. The work presents the classic materials used for the construction of electrochromic electrodes, such as WO3 and a view on the basic concepts of chromaticity as a useful approach for analyzing colorimetric results. The report also addresses how the incorporation of nanomaterials and the consequent novel modification of electrodes have furthered this area of science, producing electrochromic electrodes with high performance, high efficiency and low response times.
Resumo:
Elephant grass ash (EGA) was produced at 700 °C, with two different treatments: hot water (EGAhw) or acid solution (EGAas). The efficiency of the treatments at removing the potassium oxide was evaluated with the aim of using the EGA as a pozzolanic mineral addition for cement-based composites. Characterizations were carried out by X-ray fluorescence (XRF), X-ray diffraction (XRD), pozzolanic activity by electric conductivity and application of the kinetic-diffusive model. The analysis evidenced that the chemical treatment was more efficient for removing potassium oxide. The pozzolanic activity test and the kinetic parameters for the EGAas indicated that this ash is suitable for cement-based composites.
Resumo:
Despite the fact that Brazil is the world’s largest niobium mineral producer, governmental interest in exploration of the mineral leading to more valuable derived materials is scarce, which has reduced the country’s knowledge about a wider range of technological applications for this metal. Niobium pentoxide stands out due its remarkable electronic, structural, and textural properties. Therefore, this review aims to highlight its main properties, synthetic methods, and applications, with a particular focus on photocatalysts based on Nb2O5. This review will highlight the potential of Nb2O5 and encourage the study of niobium and its compounds in technological and environmental applications.
Resumo:
New techniques for treating wastewater, particularly the removal or degradation of organic pollutants and heavy metals, among other pollutants, have been extensively studied. The use of nanostructured iron oxides as adsorbent and photocatalyst for the removal of these contaminants has proved a promising approach, not only because of their high treatment efficiency, but also for their cost-effectiveness, having the flexibility for in situ and ex situ applications. In this review, we briefly introduced the most used kinds of iron oxide nanoparticles, some synthesis techniques for iron oxide nanostructure formation, their potential benefits in environmental clean-up, and their recent advances and applications in wastewater treatment. These advances range from the direct applications of synthesized nanoparticles as adsorbents for removing toxic contaminants or as catalysts to oxidize and break down noxious contaminants (including bacteria and viruses) in wastewater, to integrating nanoparticles into conventional treatment technologies, such as composite photocatalytic filters (membranes, sand and ceramic) that combine separation technology with photocatalytic activity. Finally, the impact of nanoparticles on the environment and human health is briefly discussed.
Resumo:
Chemically modified electrodes have been studied to obtain new and better electrochemical sensors. Transparent conductive oxides, such as fluorine-doped tin-oxide (FTO), shows electrical conductivity comparable to metals and are potential candidates for new sensors. In this work, FTO was modified by gold electrodeposition from chlorine-auric acid solution using cyclic voltammetry (CV) technique. A set of different materials were produced, varying the scan number. Scanning electron microscopy and electrochemical impedance spectroscopy were performed for the characterization of electrodes surfaces. From this analysis was possible to observe the resistive, capacitive and difusional aspects from all kind of modified electrodes produced, establishing a relationship between this parameters and the scan number. The electrode with 100 scans of CV presented better characteristics for an electrochemical sensor; it has the lowest global impedance and rising of capacitive behavior (related to electrical double layer formation) at lower frequencies. This electrode was tested for paracetamol and caffeine detection. The results showed a high specificity, decreased oxidation potential (0.58 V and 0.97 Vvs. SCE, for paracetamol and caffeine, respectively) and low detection limits (0.82 and 0.052 µmol L-1).
Resumo:
Este trabalho apresenta um estudo das propriedades eletroquímicas de eletrodos de grafite modificados, em níveis de monocamadas, com ftalocianina tetracarboxilada de ferro, FeTcPc, em soluções aquosas. Em meio alcalino, os eletrodos modificados apresentaram alta atividade eletrocatalítica para a reação de redução de oxigênio, comparável com a do eletrodo de platina. A reação processa-se de acordo com uma cinética de primeira ordem com relação ao oxigênio dissolvido, um mecanismo envolvendo 4 elétrons e associado com o processo redox Fe(3+)TcPc/Fe(2+)TcPc.
Análise voltamétrica do corante têxtil do tipo antraquinona empregando eletrodos de carbono impresso
Resumo:
O corante reativo Reactive Blue (RB4), que possui como grupo cromóforo uma antraquinona e um grupo diclorotriazina como grupo reativo, foi determinado em níveis de micromol utilizando eletrodos de carbono impresso empregando a técnica de voltametria de pulso diferencial. Foram obtidas respostas lineares entre a corrente de pico e a concentração do corante entre 3,4 x 10-6 e 3,0 x 10-4 mol L-1 em solução de KCl pH 1,0. Empregando as condições otimizadas para a analise do corante, foi estudada a influência da temperatura de aquecimento na hidrólise do grupo reativo, monitorando um pico de redução em -1,1 V (vs. carbono impresso).
Resumo:
No presente trabalho foi validado um método para a determinação simultânea de colesterol e óxidos de colesterol em produtos cárneos processados, por cromatografia líquida de alta eficiência (CLAE), utilizando detectores por conjunto de diodos e índice de refração. Inicialmente foram testados cinco métodos e oito condições cromatográficas. O método selecionado foi de acordo com SANDER et al. [25], o qual apresenta as seguintes etapas: extração dos lipídios, saponificação a frio e extração da matéria insaponificável. As condições cromatográficas estabelecidas foram: coluna Nova Pak CN HP (300 x 3,9mm, 4µm); temperatura da coluna 32ºC; fase móvel de hexano/isopropanol (96+4) com vazão de 1,0mL/min, detectores por conjunto de diodos fixado a 210nm e índice de refração. O método foi validado através da recuperação, repetibilidade, limite de detecção, limite de quantificação e comparação dos resultados obtidos pelos dois detectores. A identificação do colesterol e dos óxidos de colesterol foi feita por comparação do tempo de retenção do padrão e o da amostra, espectros de absorvância e co-cromatografia, e a confirmação por espectrometria de massas. Nas condições cromatográficas utilizadas, foram separados o colesterol e os seguintes óxidos de colesterol: colesta-4,6-dien-3-ona, 20alfa-hidroxicolesterol, 25-hidroxicolesterol, 5,6alfa-epoxicolesterol, 5,6beta-epoxicolesterol, 7alfa-hidroxicolesterol, 7beta-hidroxicolesterol e 7-cetocolesterol. Sendo identificados e confirmados nas amostras analisadas o colesterol, o 7-cetocolesterol e o 5,6beta-epoxicolesterol. O colesterol e o 5,6beta-epoxicolesterol foram quantificados pelo detector por índice de refração e o 7-cetocolesterol pelo detector por conjunto de diodos.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Ingeniería Ambiental) UANL