998 resultados para electronic coupling
Resumo:
This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.
Resumo:
Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. The critical aspect in the manufacture of the optical backplane is the successful coupling between VCSEL (Vertical Cavity Surface Emitting Laser) device and embedded waveguide in the OECB. Optical performance will be affected by CTE mismatch in the material properties, and manufacturing tolerances. This paper will discuss results from a multidisciplinary research project involving both experimentation and modelling. Key process parameters are being investigated using Design of Experiments and Finite Element Modelling. Simulations have been undertaken that predict the temperature in the VCSEL during normal operation, and the subsequent misalignment that this imposes. The results from the thermomechanical analysis are being used with optimisation software and the experimental DOE (Design of Experiments) to identify packaging parameters that minimise misalignment. These results are also imported into an optical model which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the thermomechanical and optical models will be discussed as will the experimental results from the DOE.
Resumo:
The aim of integrating computational mechanics (FEA and CFD) and optimization tools is to speed up dramatically the design process in different application areas concerning reliability in electronic packaging. Design engineers in the electronics manufacturing sector may use these tools to predict key design parameters and configurations (i.e. material properties, product dimensions, design at PCB level. etc) that will guarantee the required product performance. In this paper a modeling strategy coupling computational mechanics techniques with numerical optimization is presented and demonstrated with two problems. The integrated modeling framework is obtained by coupling the multi-physics analysis tool PHYSICA - with the numerical optimization package - Visua/DOC into a fuJly automated design tool for applications in electronic packaging. Thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and life-time under thermal cycling. Also a thermal management design based on multi-physics analysis with coupled thermal-flow-stress modeling is discussed. The Response Surface Modeling Approach in conjunction with Design of Experiments statistical tools is demonstrated and used subsequently by the numerical optimization techniques as a part of this modeling framework. Predictions for reliable electronic assemblies are achieved in an efficient and systematic manner.
Resumo:
This paper describes hybrid mathematical model which couples the mechanics of the mass/spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. A discussion of the coupling method is presented including remarks on the errors encountered intrinsic to the discretisation scheme. The numerical results of a vibrating rubber band and a vibrating paper fibre are compared to their experimental counterparts. The fundamental frequencies of the acoustic signals are compared showing a close agreement between the experimental and numerical results
Resumo:
In this paper, a method for the integration of several numerical analytical techniques that are used in microsystems design and failure analysis is presented. The analytical techniques are categorized into four groups in the discussion, namely the high-fidelity analytical tools, i.e. finite element (FE) method, the fast analytical tools referring to reduced order modeling (ROM); the optimization tools, and probability based analytical tools. The characteristics of these four tools are investigated. The interactions between the four tools are discussed and a methodology for the coupling of these four tools is offered. This methodology consists of three stages, namely reduced order modeling, deterministic optimization and probabilistic optimization. Using this methodology, a case study for optimization of a solder joint is conducted. It is shown that these analysis techniques have mutual relationship of interaction and complementation. Synthetic application of these techniques can fully utilize the advantages of these techniques and satisfy various design requirements. The case study shows that the coupling method of different tools provided by this paper is effective and efficient and it is highly relevant in the design and reliability analysis of microsystems
Resumo:
Controlling coherent electromagnetic interactions in molecular systems is a problem of both fundamental interest and important applicative potential in the development of photonic and opto-electronic devices. The strength of these interactions determines both the absorption and emission properties of molecules coupled to nanostructures, effectively governing the optical properties of such a composite metamaterial. Here we report on the observation of strong coupling between a plasmon supported by an assembly of oriented gold nanorods (ANR) and a molecular exciton. We show that the coupling is easily engineered and is deterministic as both spatial and spectral overlap between the plasmonic structure and molecular aggregates are controlled. We think that these results in conjunction with the flexible geometry of the ANR are of potential significance to the development of plasmonic molecular devices.
Resumo:
A quantitative approach is used to understand the chain growth mechanism in FT synthesis on the Ru, Fe, Rh, and Re surfaces. The C-C coupling reactions are extensively calculated on the stepped metal surfaces. Combining the coupling barriers and reactant stabilities, we investigate the reaction rates of all possible C, + C-1 coupling pathways on the metal surfaces. It is found that (i) all the transition-state structures are similar on these surfaces, while some coupling barriers are very different; (ii) the dominant chain growth pathways on these surfaces are different: C + CH and CH + CH on Rh and Ru surfaces, C + CH3 on Fe surface, and C + CH on Re surface. The common features of the major coupling reactions together with those on the Co surface are also discussed.
Resumo:
This invention relates to electronic circuit packages designed to hold high frequency circuits operating particularly, but not exclusively, in the microwave, millimeter wave, and sub-millimeter wave bands. The invention provides a package incorporating a cavity in a material for containment of the circuits, wherein the package further incorporates at least one conductive surface mounted on an inner surface extending into the cavity, the conductivity thereof being adapted to be at least partially absorbent to electromagnetic radiation. The conductive surface according to the present invention will tend to attenuate electromagnetic radiation present within the cavity, and so help to prevent undesired coupling from one point to another within the cavity. The conductivity of the conductive material is preferably arranged to match the impedance of the radiation mode estimated or computed to be present within the cavity.
Resumo:
An extensive investigation of the ferromagnetic compound TlCo2S2 has resulted in new information on the electronic and magnetic structure. Electronic structure calculations showed that magnetic ordering is energetically favorable with a clear driving force for ferromagnetic coupling within the cobalt layers. TlCo2S2 is metallic and the conductivity is due to holes in the valence band. XPS single crystal measurements did not show evidence of mixed oxidation states of cobalt. Neutron powder diffraction resulted in a ferromagnetic structure with the magnetic moment in the ab-plane. The derived magnetic moment of the cobalt atom is 0.65(2) mu(B) at 10 K and is in very good agreement with the value, mu(sat) = 0.65(1) mu(B) at 10 K, inferred from the magnetic hysteresis curve. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Tailoring optical properties of artificial metamaterials, whose optical properties go beyond the limitations of conventional and naturally occurring materials, is of importance in fundamental research and has led to many important applications such as security imaging, invisible cloak, negative refraction, ultrasensitive sensing, transformable and switchable optics. Herein, by precisely controlling the size, symmetry and topology of alphabetical metamaterials with U, S, Y, H, U-bar and V shapes, we have obtained highly tunable optical response covering visible-to-infrared (Vis-NIR) optical frequency. In addition, we show a detailed study on the physical origin of resonance modes, plasmonic coupling, the dispersion of electronic and magnetic surface plasmon polaritons, and the possibility of negative refraction. We have found that all the electronic and magnetic modes follow the dispersion of surface plasmon polaritons thus essentially they are electronic- and magnetic-surface-plasmon-polaritons-like (ESPP-like and MSPP-like) modes resulted from diffraction coupling between localized surface plasmon and freely-propagating light. Based on the fill factor and formula of magnetism permeability, we predict that the alphabetical metamaterials should show the negative refraction capability in visible optical frequency. Furthermore, we have demonstrated the specific ultrasensitive surface enhanced Raman spectroscopy (SERS) sensing of monolayer molecules and femtomolar food contaminants by tuning their resonance to match the laser wavelength, or by tuning the laser wavelength to match the plasmon resonance of metamaterials. Our tunable alphabetical metamaterials provide a generic platform to study the electromagnetic properties of metamaterials and explore the novel applications in optical frequency.
Resumo:
New and robust methodologies have been designed for palladium-catalyzed crosscoupling reactions involving·a novel·class oftertiary phosphine ligand incorporating a phospha-adamantane framework. It has been realized that bulky, electron-rich phosphines, when used as ligands for palladium, allow for cross-coupling reactions involving even the less reactive aryl halide substrates with a variety of coupling partners. In an effort to design new ligands suitable for carrying out cross-coupling transformations, the secondary phosphine, 1,3,5,7-tetramethyl-2,4,8-trioxa-6phosphaadamantane was converted into a number of tertiary phosphine derivatives. The ability of these tertiary phosphaadamantanes to act as effective ligands in the palladiumcatalyzed Suzuki cross-coupling was examined. 1,3,5,7-Tetramethyl-6-phenyl-2,4,8trioxa- 6-phosphaadamantane (PA-Ph) used in combination with Pdz(dba)3permitted the reaction of an array of aryl iodides, bromides and chlorides with a variety arylboronic acids to give biaryls in good to excellent yields. Subsequently, palladium complexes of PA-Ph were prepared and isolated in high yields as air stable palladium bisphosphine complexes. Two different kinds of crystals were isolated and upon characterization revealed two complexes, Pd(PA-Ph)z.dba and Pd(PA-Ph)zOz. Preliminary screening for their catalytic activity indicated that the former is more reactive than the latter. Pd(PAPh) z.dba was applied as the catalyst for Sonogashira cross-coupling reactions of aryl iodides and bromides and in the reactions of aryl bromides and chlorides with ketones to give a-arylated ketones at mild temperatures in high yields.
Resumo:
New and robust methodologies have been designed for palladiumcatalyzed cross-coupling reactions involving a library of novel tertiary phosphine ligands incorporating a phospha-adamantane framework. The secondary phosphine, l,3,5,7-tetramethyl-2,4,8-trioxa-6-phospha-adamantane was converted into a small library of tertiary phosphine derivatives and the ability of these tertiary phosphaadamantanes to act as effective ligands in the palladium-catalyzed amination reaction and p-alkyl-Suzuki cross-coupling was examined. l,3,5,7-Tetramethyl-6- phenyl-2,4,8-trioxa-6-phosphaadamantane (PA-Ph) used in combination with Pd2(dba)3 CHCI3 facilitated the reaction of an array of aryl iodides, bromides and chlorides with a variety secondary and primary amines to give tertiary and secondary amines respectively in good to excellent yields. 8-(2,4-Dimethoxyphenyl)- l,3,5,7-tetramethyl-2,4,6-trioxa-8-phospha-tricyclo[3.3.1.1*3,7*]decane used in combination with Pd(0Ac)2 permitted the reaction of an array of alkyl iodides, and bromides with a variety aryl boronic acids and alkyl 9-BBN compounds in good to excellent yields. Subsequent to this work, the use of phosphorous based ionic liquids, specifically tetradecyltrihexylphosphonium chloride (THPC), in the Heck reaction provided good to excellent yields in the coupling of aryl iodides and bromides with a variety of olefins.
Resumo:
Le présent mémoire décrit la synthèse et l’utilité de complexes Cu-NHC. En premier lieu, la synthèse de complexes de cuivre porteurs de ligand(s) de type carbène-N-hétérocyclique (NHC) via une génération décarboxylative de carbènes sera présentée. En effet, de précédents rapports font état de l’utilisation de carboxylates d’imidazol(in)ium en tant que précurseurs carbéniques sous conditions thermolytiques. Ainsi, la présente étude montre l’utilisation de ces espèces zwitterioniques pour la synthèse de complexes de cuivre(I) mono- et bis-NHC comportant divers substituants et contre-ions. Une seconde partie du projet se concentrera sur l’évaluation de complexes Cu-NHC en tant que catalyseurs pour la synthèse de 2,2’-binaphtols via une réaction de couplage oxydatif de naphtols. L’objectif de ce projet de recherche est d’étudier les effets de variations structurales de différents complexes Cu-NHC afin de construire un processus catalytique plus efficace. Les effets de la structure du catalyseur sur la réaction de couplage ont été évalués en variant son contre-ion, le nombre de ligands NHC se coordonnant au cuivre, ainsi que la nature des substituants du ligand.