985 resultados para electron capture detector
Resumo:
K-Ar ages of 82 slate and schist (white-mica-rich whole rock) samples are reported for Late Precambrian-Early Ordovician metamorphic rocks of the Wilson, Bowers and Robertson Bay terranes of northern Victoria Land. These are amalgamated in two vertical sections along composite NE-SW horizontal profiles across (1) Oates Coast in the north, and (2) Terra Nova Bay area in the south. The ages are in the range 328-517 Ma. Both profiles show some age variation with altitude, but more importantly, they define an inverted wedge shaped pattern, reflecting a "pop-up" strucure. This is oriented NW-SE at the eastern margin of the Wilson terrane, and the edges coincide with the Exiles and Wilson Thrusts which cross the region. Ages inside the "pop-up" structure are younger, ca. 460-480 Ma, than those along its eastern and western flanks, ca. 490-520 Ma. The K-Ar age patterns thus demonstrate a late Ross Orogenic age (ca. 460 Ma) for this structure, which may be associated with assembly of the Wilson and Bowers terranes.
Resumo:
A de novo sequencing program for proteins is described that uses tandem MS data from electron capture dissociation and collisionally activated dissociation of electrosprayed protein ions. Computer automation is used to convert the fragment ion mass values derived from these spectra into the most probable protein sequence, without distinguishing Leu/Ile. Minimum human input is necessary for the data reduction and interpretation. No extra chemistry is necessary to distinguish N- and C-terminal fragments in the mass spectra, as this is determined from the electron capture dissociation data. With parts-per-million mass accuracy (now available by using higher field Fourier transform MS instruments), the complete sequences of ubiquitin (8.6 kDa) and melittin (2.8 kDa) were predicted correctly by the program. The data available also provided 91% of the cytochrome c (12.4 kDa) sequence (essentially complete except for the tandem MS-resistant region K13–V20 that contains the cyclic heme). Uncorrected mass values from a 6-T instrument still gave 86% of the sequence for ubiquitin, except for distinguishing Gln/Lys. Extensive sequencing of larger proteins should be possible by applying the algorithm to pieces of ≈10-kDa size, such as products of limited proteolysis.
Resumo:
The use of canines as a method of detection of explosives is well established worldwide and those applying this technology range from police forces and law enforcement to humanitarian agencies in the developing world. Despite the recent surge in publication of novel instrumental sensors for explosives detection, canines are still regarded by many to be the most effective real-time field method of explosives detection. However, unlike instrumental methods, currently it is difficult to determine detection levels, perform calibration of the canines' ability or produce scientifically valid quality control checks. Accordingly, amongst increasingly strict requirements regarding forensic evidence admission such as Frye and Daubert, there is a need for better scientific understanding of the process of canine detection. ^ When translated to the field of canine detection, just like any instrumental technique, peer reviewed publication of the reliability, success and error rates, is required for admissibility. Commonly training is focussed towards high explosives such as TNT and Composition 4, and the low explosives such as Black and Smokeless Powders are added often only for completeness. ^ Headspace analyses of explosive samples, performed by Solid Phase Microextraction (SPME) paired with Gas Chromatography - Mass Spectrometry (GC-MS), and Gas Chromatography - Electron Capture Detection (GC-ECD) was conducted, highlighting common odour chemicals. The odour chemicals detected were then presented to previously trained and certified explosives detection canines, and the activity/inactivity of the odour determined through field trials and experiments. ^ It was demonstrated that TNT and cast explosives share a common odour signature, and the same may be said for plasticized explosives such as Composition C-4 and Deta Sheet. Conversely, smokeless powders were demonstrated not to share common odours. An evaluation of the effectiveness of commercially available pseudo aids reported limited success. The implications of the explosive odour studies upon canine training then led to the development of novel inert training aids based upon the active odours determined. ^
Resumo:
The general method for determining organomercurials in environmental and biological samples is gas chromatography with electron capture detection (GC-ECD). However, tedious sample work up protocols and poor chromatographic response show the need for the development of new methods. Here, Atomic Fluorescence-based methods are described, free from these deficiencies. The organomercurials in soil, sediment and tissue samples are first released from the matrices with acidic KBr and cupric ions and extracted into dichloromethane. The initial extracts are subjected to thiosulfate clean up and the organomercury species are isolated as their chloride derivatives by cupric chloride and subsequent extraction into a small volume of dichloromethane. In water samples the organomercurials are pre-concentrated using a sulfhydryl cotton fiber adsorbent, followed by elution with acidic KBr and CuSO 4 and extraction into dichloromethane. Analysis of the organomercurials is accomplished by capillary column chromatography with atomic fluorescence detection.
Resumo:
The signature of 60Fe in deep-sea crusts indicates that one or more supernovae exploded in the solar neighbourhood about 2.2 million years ago1–4. Recent isotopic analysis is consistent with a core-collapse or electron-capture supernova that occurred 60 to 130 parsecs from the Sun5. Moreover, peculiarities in the cosmic ray spectrum point to a nearby supernova about two million years ago6. The Local Bubble of hot, diffuse plasma, in which the Solar System is embedded, originated from 14 to 20 supernovae within a moving group, whose surviving members are now in the Scorpius– Centaurus stellar association7,8. Here we report calculations of the most probable trajectories and masses of the supernova progenitors, and hence their explosion times and sites. The 60Fe signal arises from two supernovae at distances between 90 and 100 parsecs. The closest occurred 2.3 million years ago at present-day galactic coordinates l = 327°, b = 11°, and the second-closest exploded about 1.5 million years ago at l = 343°, b = 25°, with masses of 9.2 and 8.8 times the solar mass, respectively. The remaining supernovae, which formed the Local Bubble, contribute to a smaller extent because they happened at larger distances and longer ago (60Fe has a half- life of 2.6 million years9,10). There are uncertainties relating to the nucleosynthesis yields and the loss of 60Fe during transport, but they do not influence the relative distribution of 60Fe in the crust layers, and therefore our model reproduces the measured relative abundances very well.
Resumo:
This paper presents measurements from the ATLAS experiment of the forward-backward asymmetry in the reaction pp→Z/γ∗→l+l−, with l being electrons or muons, and the extraction of the effective weak mixing angle. The results are based on the full set of data collected in 2011 in pp collisions at the LHC at s√ = 7 TeV, corresponding to an integrated luminosity of 4.8 fb−1. The measured asymmetry values are found to be in agreement with the corresponding Standard Model predictions. The combination of the muon and electron channels yields a value of the effective weak mixing angle of 0.2308±0.0005(stat.)±0.0006(syst.)±0.0009(PDF), where the first uncertainty corresponds to data statistics, the second to systematic effects and the third to knowledge of the parton density functions. This result agrees with the current world average from the Particle Data Group fit.
Resumo:
The operation of a previously proposed terahertz (THZ) detector is formulated in detail. The detector is based on the hot-electron effect of the 2D electron gas (2DEG) in the quantum well (QW) of a GaAs/AIGaAs heterostructure. The interaction between the THz radiation and the 2DEG, the current enhancement due to hot -electron effect, and the noise performance of the detector are analyzed
Resumo:
This Letter describes the search for a new heavy charged gauge boson W-' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron p (p) over bar Collider at root s=1.96 TeV, and correspond to an integrated luminosity of about 1 fb(-1). Lacking any significant excess in the data in comparison with known processes, an upper limit is set on sigma(')(W)xB(W-'-> e nu), and a W-' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits and is the most stringent to date.
Resumo:
In this Letter we report on a search for long-lived particles that decay into final states with two electrons or photons. Such long-lived particles arise in a variety of theoretical models, such as hidden valleys and supersymmetry with gauge-mediated breaking. By precisely reconstructing the direction of the electromagnetic shower we are able to probe much longer lifetimes than previously explored. We see no evidence of the existence of such long-lived particles and interpret this search as a quasi model-independent limit on their production cross section, as well as a limit on a long-lived fourth generation quark. © 2008 The American Physical Society.
Resumo:
The Standard Model of particle physics was developed to describe the fundamental particles, which form matter, and their interactions via the strong, electromagnetic and weak force. Although most measurements are described with high accuracy, some observations indicate that the Standard Model is incomplete. Numerous extensions were developed to solve these limitations. Several of these extensions predict heavy resonances, so-called Z' bosons, that can decay into an electron positron pair. The particle accelerator Large Hadron Collider (LHC) at CERN in Switzerland was built to collide protons at unprecedented center-of-mass energies, namely 7 TeV in 2011. With the data set recorded in 2011 by the ATLAS detector, a large multi-purpose detector located at the LHC, the electron positron pair mass spectrum was measured up to high masses in the TeV range. The properties of electrons and the probability that other particles are mis-identified as electrons were studied in detail. Using the obtained information, a sophisticated Standard Model expectation was derived with data-driven methods and Monte Carlo simulations. In the comparison of the measurement with the expectation, no significant deviations from the Standard Model expectations were observed. Therefore exclusion limits for several Standard Model extensions were calculated. For example, Sequential Standard Model (SSM) Z' bosons with masses below 2.10 TeV were excluded with 95% Confidence Level (C.L.).
Resumo:
In this thesis the measurement of the effective weak mixing angle wma in proton-proton collisions is described. The results are extracted from the forward-backward asymmetry (AFB) in electron-positron final states at the ATLAS experiment at the LHC. The AFB is defined upon the distribution of the polar angle between the incoming quark and outgoing lepton. The signal process used in this study is the reaction pp to zgamma + X to ee + X taking a total integrated luminosity of 4.8\,fb^(-1) of data into account. The data was recorded at a proton-proton center-of-mass energy of sqrt(s)=7TeV. The weak mixing angle is a central parameter of the electroweak theory of the Standard Model (SM) and relates the neutral current interactions of electromagnetism and weak force. The higher order corrections on wma are related to other SM parameters like the mass of the Higgs boson.rnrnBecause of the symmetric initial state constellation of colliding protons, there is no favoured forward or backward direction in the experimental setup. The reference axis used in the definition of the polar angle is therefore chosen with respect to the longitudinal boost of the electron-positron final state. This leads to events with low absolute rapidity have a higher chance of being assigned to the opposite direction of the reference axis. This effect called dilution is reduced when events at higher rapidities are used. It can be studied including electrons and positrons in the forward regions of the ATLAS calorimeters. Electrons and positrons are further referred to as electrons. To include the electrons from the forward region, the energy calibration for the forward calorimeters had to be redone. This calibration is performed by inter-calibrating the forward electron energy scale using pairs of a central and a forward electron and the previously derived central electron energy calibration. The uncertainty is shown to be dominated by the systematic variations.rnrnThe extraction of wma is performed using chi^2 tests, comparing the measured distribution of AFB in data to a set of template distributions with varied values of wma. The templates are built in a forward folding technique using modified generator level samples and the official fully simulated signal sample with full detector simulation and particle reconstruction and identification. The analysis is performed in two different channels: pairs of central electrons or one central and one forward electron. The results of the two channels are in good agreement and are the first measurements of wma at the Z resonance using electron final states at proton-proton collisions at sqrt(s)=7TeV. The precision of the measurement is already systematically limited mostly by the uncertainties resulting from the knowledge of the parton distribution functions (PDF) and the systematic uncertainties of the energy calibration.rnrnThe extracted results of wma are combined and yield a value of wma_comb = 0.2288 +- 0.0004 (stat.) +- 0.0009 (syst.) = 0.2288 +- 0.0010 (tot.). The measurements are compared to the results of previous measurements at the Z boson resonance. The deviation with respect to the combined result provided by the LEP and SLC experiments is up to 2.7 standard deviations.
Resumo:
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model.rnThe production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurementrnof the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb-1. The differential cross-section of pp -> Z/gamma + X -> e+e- + X is measured as a function of the invariant mass in the range 116 GeV < mee < 1500 GeV. The background is estimated using a data driven method and Monte Carlo simulations. The final cross-section is corrected for detector effects and different levels of final state radiation corrections. A comparison isrnmade to various event generators and to predictions of pQCD calculations at NNLO. A good agreement within the uncertainties between measured cross-sections and Standard Model predictions is observed.rnExamples of observed phenomena which can not be explained by the Standard Model are the amount of dark matter in the universe and neutrino oscillations. To explain these phenomena several extensions of the Standard Model are proposed, some of them leading to new processes with a high multiplicity of electrons and/or positrons in the final state. A model independent search in multi-object final states, with objects defined as electrons and positrons, is performed to search for these phenomenas. Therndataset collected at a center-of-mass energy of sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1 is used. The events are separated in different categories using the object multiplicity. The data-driven background method, already used for the cross-section measurement was developed further for up to five objects to get an estimation of the number of events including fake contributions. Within the uncertainties the comparison between data and Standard Model predictions shows no significant deviations.
Resumo:
This Letter presents the first search for a heavy particle decaying into an e ± μ(-/+) final state in sqrt[s] = 7 TeV pp collisions at the LHC. The data were recorded by the ATLAS detector during 2010 and correspond to a total integrated luminosity of 35 pb(-1). No excess above the standard model background expectation is observed. Exclusions at 95% confidence level are placed on two representative models. In an R-parity violating supersymmetric model, tau sneutrinos with a mass below 0.75 TeV are excluded, assuming all R-parity violating couplings are zero except λ(311)' = 0.11 and λ312 = 0.07. In a lepton flavor violating model, a Z'-like vector boson with masses of 0.70-1.00 TeV and corresponding cross sections times branching ratios of 0.175-0.183 pb is excluded. These results extend to higher mass R-parity violating sneutrinos and lepton flavor violating Z's than previous constraints from the Tevatron.