980 resultados para electromagnetic suppressor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community. (C) 2014 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of spurious solutions is a well-known limitation of the standard nodal finite element method when applied to electromagnetic problems. The two commonly used remedies that are used to address this problem are (i) The addition of a penalty term with the penalty factor based on the local dielectric constant, and which reduces to a Helmholtz form on homogeneous domains (regularized formulation); (ii) A formulation based on a vector and a scalar potential. Both these strategies have some shortcomings. The penalty method does not completely get rid of the spurious modes, and both methods are incapable of predicting singular eigenvalues in non-convex domains. Some non-zero spurious eigenvalues are also predicted by these methods on non-convex domains. In this work, we develop mixed finite element formulations which predict the eigenfrequencies (including their multiplicities) accurately, even for nonconvex domains. The main feature of the proposed mixed finite element formulation is that no ad-hoc terms are added to the formulation as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of finite element spaces for the different variables. We show that the formulation works even for inhomogeneous domains where `double noding' is used to enforce the appropriate continuity requirements at an interface. For two-dimensional problems, the shape of the domain can be arbitrary, while for the three-dimensional ones, with our current formulation, only regular domains (which can be nonconvex) can be modeled. Since eigenfrequencies are modeled accurately, these elements also yield accurate results for driven problems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally induced demixing in an LCST mixture, polystyrene (PS)/polyvinyl methyl ether] (PVME), was used as a template to design materials with high electrical conductivity. This was facilitated by gelation of multiwall carbon nanotubes (MWNTs) in a given phase of the blends. The MWNTs were mixed in the miscible blends and the thermodynamic driven demixing further resulted in selective localization in the PVME phase of the blends. This was further confirmed by atomic force microscopy (AFM). The time dependent gelation of MWNTs at shallow quench depth, evaluated using isochronal temperature sweep by rheology, was studied by monitoring the melt electrical conductivity of the samples in situ by an LCR meter coupled to a rheometer. By varying the composition in the mixture, several intricate shapes like gaskets and also coatings capable of attenuating the EM radiation in the microwave frequency can be derived. For instance, the PVME rich mixtures can be molded in the form of a gasket, O-ring and other intricate shapes while the PS rich mixtures can be coated onto an insulating polymer to enhance the shielding effectiveness (SE) for EM radiation. The SE of the various materials was analyzed using a vector network analyzer in both the X-band (8.2 to 12 GHz) and the K-u-band (12 to 18 GHz) frequency. The improved SE upon gelation of MWNTs in the demixed blends is well evident by comparing the SE before and after demixing. A reflection loss of -35 dB was observed in the blends with 2 wt% MWNTs. Further, by coating a layer of ca. 0.15 mm of PS/PVME/MWNT, a SE of -15 dB at 18 GHz could be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic Articulography (EMA) technique is used to record the kinematics of different articulators while one speaks. EMA data often contains missing segments due to sensor failure. In this work, we propose a maximum a-posteriori (MAP) estimation with continuity constraint to recover the missing samples in the articulatory trajectories recorded using EMA. In this approach, we combine the benefits of statistical MAP estimation as well as the temporal continuity of the articulatory trajectories. Experiments on articulatory corpus using different missing segment durations show that the proposed continuity constraint results in a 30% reduction in average root mean squared error in estimation over statistical estimation of missing segments without any continuity constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, multiwall carbon nanotubes (MWNTs) were chemically grafted onto dopamine anchored iron oxide (Fe3O4) nanoparticles via diazotization reaction to design electromagnetic (EM) shielding materials based on PC (polycarbonate)/SAN poly (styrene-co-acrylonitrile)] blends. A two step mixing protocol was adopted to selectively localize the nanoparticles in a given phase of the blends. In the first step, MWNT-g-Fe3O4 nanoparticles were solution blended with PC, followed by dilution with SAN during melt mixing in the subsequent step. This strategy, besides improving the quality of dispersion of MWNTs in the blends, facilitated enhanced EM interference shielding effectiveness (SE). Both, the MWNTs and the modified MWNTs, selectively localized in the PC phase and led to high electrical conductivity, in striking contrast to PC filled MWNT composites. The SE was measured on toroidal samples over a broad range of frequencies; X-band (8.2-12 GHz) and K-u-band (12-18 GHz). It was observed that the shielding mechanism mostly involved reflection in the blends with MWNTs, whereas absorption dominated in the case of blends with MWNT-g-Fe3O4. To realize the efficacy of this strategy, a few compositions were prepared by physical mixing MWNTs with Fe3O4 nanoparticles. Intriguingly, blends with MWNT-g-Fe3O4 nanoparticles manifested enhanced microwave absorption over physically mixed nanoparticles. An SE of -32.5 dB was observed (at 18 GHz) for MWNT (3 wt%)-g-Fe3O4 (3 vol%) in PC/SAN blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly conducting composites were derived by selectively localizing multiwall carbon nanotubes (MWNTs) in co-continuous PVDF/ABS (50/50, wt/wt) blends. The electrical percolation threshold was obtained between 0.5 and 1 wt% MWNTs as manifested by a dramatic increase in the electrical conductivity by about six orders of magnitude with respect to the neat blends. In order to further enhance the electrical conductivity of the blends, the MWNTs were modified with amine terminated ionic liquid (IL), which, besides enhancing the interfacial interaction with PVDF, facilitated the formation of a network like structure of MWNTs. This high electrical conductivity of the blends, at a relatively low fraction (1 wt%), was further explored to design materials that can attenuate electromagnetic (EM) radiation. More specifically, to attenuate the EM radiation by absorption, a ferroelectric phase was introduced. To accomplish this, barium titanate (BT) nanoparticles chemically stitched onto graphene oxide (GO) sheets were synthesized and mixed along with MWNTs in the blends. Intriguingly, the total EM shielding effectiveness (SE) was enhanced by ca. 10 dB with respect to the blends with only MWNTs. In addition, the effect of introducing a ferromagnetic phase (Fe3O4) along with IL modified MWNTs was also investigated. This study opens new avenues in designing materials that can attenuate EM radiation by selecting either a ferroelectric (BT-GO) or a ferromagnetic phase (Fe3O4) along with intrinsically conducting nanoparticles (MWNTs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various NixCo1-x alloys (with x varying from 0-60 wt%, Ni: nickel, Co: cobalt) were prepared by vacuum arc melting and mixed with polyvinylidene fluoride (PVDF) to design lightweight, flexible and corrosion resistant materials that can attenuate electromagnetic radiation. The saturation magnetization scaled with the fraction of Co in the alloy. Two key properties such as high-magnetic permeability and high-electrical conductivity were targeted. While the former was achieved using a Ni-Co alloy, multiwalled carbon nanotubes (CNTs) in the composites accomplished the latter. A unique approach was adopted to prepare the composites wherein PVDF powder along with CNTs and Ni-Co flakes were made into a paste, using a solvent, followed by hot pressing. Interestingly, CNTs facilitated in uniform dispersion of the Ni-Co alloy in PVDF, as manifested from synergistic improvement in the electrical conductivity. A significant improvement in the shielding effectiveness (41 dB, >99.99% attenuation) was achieved with the addition of 50 wt% of Ni40Co60 alloy and 3 wt% CNTs. Intriguingly, due to the unique processing technique adopted here, the flexibility of the composites was retained and more interestingly, the composites were resistant to corrosion as compared to only Ni-Co alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique approach was adopted to drive the multiwall carbon nanotubes (MWNTs) to the interface of immiscible PVDF-ABS blends by wrapping the nanotubes with a mutually miscible homopolymer (PMMA). A tailor made interface with an improved stress transfer was achieved in the blends with PMMA wrapped MWNTs. This manifested in an impressive 108% increment in the tensile strength and 48% increment in the Young's modulus with 3 wt% PMMA wrapped MWNTs in striking contrast to the neat blends. As the PMMA wrapped MWNTs localized at the interface of PVDF-ABS blends, the electrical conductivity could be tuned with respect to only MWNTs, which were selectively localized in the PVDF phase, driven by thermodynamics. The electromagnetic shielding properties were assessed using a vector network analyser in a broad range of frequency, X-band (8-12 GHz) and Ku-band (12-18 GHz). Interestingly, enhanced EM shielding was achieved by this unique approach. The blends with only MWNTs shielded the EM waves mostly by reflection however, the blends with PMMA wrapped MWNTs (3 wt%) shielded mostly by absorption (62%). This study opens new avenues in designing materials, which show simultaneous improvement in mechanical, electrical conductivity and EM shielding properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a minimum, reflection loss of 70 a was achieved, for a 6 mm thick shield (at 17.1 GHz frequency) employing a unique approach. This was accomplished by engineering nanostructures through decoration of magnetic nanopartides (nickel, Ni) onto graphene oxide (GO) sheets. Enhanced electromagnetic (EM) shielding was derived by selectively, localizing the nanoscopic particles in a specific phase of polyethylene (PE)/poly(ethylene oxide) (PEO) blends. By introduction of a conducting inclusion (like multiwall carbon nanotubes, MWNTs) together with the engineered nanostructures (nickel-decorated GO, (GO-Ni), the shielding efficiency can be enhanced significantly in contrast to physically mixing the particles in the blends. For instance, the composites showed a shielding efficiency >25 dB for a combination of MWNTS (3 wt %) and Ni nanoparticles (52 wt %) in PE/PEO blends. However, similar shielding effectiveness could be achieved for a combination of MWNTs (3 wt %) and 10 vol % of GO-Ni where in the effective concentration of Ni was only 19 wt %. The GO-Ni sheets facilitated in an efficient charge transfer as manifested from high electrical conductivity in the blends besides enhancing the permeability in the blends. It is envisioned that GO is simultaneously reduced in the process of synthesizing GO-Ni, and this facilitated in efficient charge transfer between the neighboring CNTs. More interestingly, the blends With MWNTs/GO-Ni attenuated the incoming EM radiation mostly by absorption. This study opens new avenues in designing polyolefin-based lightweight shielding materials by engineering nanostructures for numerous applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work attempts to bring critical insights into the electromagnetic shielding efficiency in polymeric nanocomposites with respect to the particle size of magnetic nanoparticles added along with or without a conductive inclusion. To gain insight, various Ni-Fe (NixFe1-x; x = 10, 20, 40; Ni: nickel, Fe: iron) alloys were prepared by a vacuum arc melting process and different particle sizes were then achieved by a controlled grinding process for different time scales. Poly(vinylidene fluoride), PVDF based composites involving different particle sizes of the Ni-Fe alloy were prepared with or without multiwall carbon nanotubes (MWNTs) by a wet grinding approach. The Ni-Fe particles were thoroughly characterized with respect to their microstructure and magnetization; and the electromagnetic (EM) shielding efficiency (SE) of the resulting composites was obtained from the scattering parameters using a vector network analyzer in a broad range of frequencies. The saturation magnetization of Ni-Fe nanoparticles and the bulk electrical conductivity of PVDF/Ni-Fe composites scaled with increasing particle size of NiFe. Interestingly, the PVDF/Ni-Fe/MWNT composites showed a different trend where the bulk electrical conductivity and SE scaled with decreasing particle size of the Ni-Fe alloy. A total SE of similar to 35 dB was achieved with 50 wt% of Ni60Fe40 and 3 wt% MWNTs. More interestingly, the PVDF/Ni-Fe composites shielded the EM waves mostly by reflection whereas, the PVDF/Ni-Fe/MWNT shielded mostly by absorption. A minimum reflection loss of similar to 58 dB was achieved in the PVDF/Ni-Fe/MWNT composites in the X-band (8-12 GHz) for a particular size of Ni-Fe alloy nanoparticles. This study brings new insights into the EM shielding efficiency in PVDF/magnetic nanoparticle based composites in the presence and absence of conducting inclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering blend structure with tailor-made distribution of nanoparticles is the prime requisite to obtain materials with extraordinary properties. Herein, a unique strategy of distributing nanoparticles in different phases of a blend structure has resulted in >99% blocking of incoming electromagnetic (EM) radiation. This is accomplished by designing a ternary polymer blend structure using polycarbonate (PC), poly(vinylidene fluoride) (PVDF), and poly(methyl methacrylate) (PMMA) to simultaneously improve the structural, electrical, and electromagnetic interference shielding (EMI). The blend structure was made conducting by preferentially localizing the multi-wall nanotubes (MWNTs) in the PVDF phase. By taking advantage of pp stacking MWNTs was noncovalently modified with an imidazolium based ionic liquid (IL). Interestingly, the enhanced dispersion of IL-MWNTs in PVDF improved the electrical conductivity of the blends significantly. While one key requisite to attenuate EM radiation (i.e., electrical conductivity) was achieved using MWNTs, the magnetic properties of the blend structure was tuned by introducing barium ferrite (BaFe) nanoparticles, which can interact with the incoming EM radiation. By suitably modifying the surface of BaFe nanoparticles, we can tailor their localization under the macroscopic processing condition. The precise localization of BaFe nanoparticles in the PC phase, due to nucleophilic substitution reaction, and the MWNTs in the PVDF phase not only improved the conductivity but also facilitated in absorption of the incoming microwave radiation due to synergetic effect from MWNT and BaFe. The shielding effectiveness (SE) was measured in X and K-u band, and an enhanced SE of -37 dB was noted at 18 GHz frequency. PMMA, which acted as an interfacial modifier in PC/PVDF blends further, resulting in a significant enhancement in the mechanical properties besides retaining high SE. This study opens a new avenue in designing mechanically strong microwave absorbers with a suitable combination of materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein a facile strategy has been adopted to design epoxy based adhesive/coating materials that can shield electromagnetic radiation. Multiwalled carbon nanotubes (MWNTs) were non-covalently modified with an ionic liquid and 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) (Co-TPP). The dispersion state of modified MWNTs in the composites was assessed using a scanning electron microscope. The electrical conductivity of the composites was improved with the addition of IL and Co-TPP. The shielding effectiveness was studied as a function of thickness and intriguingly, composites with as thin as 0.5 mm thickness were observed to reflect 497% of the incoming radiation. Carbon fibre reinforced polymer substrates were used to demonstrate the adhesive properties of the designed epoxy composites. Although, the shielding effectiveness of epoxy/MWNT composites with or without IL and Co-TPP is nearly the same for 0.5 mm thick samples, the lap shear test under tensile loading revealed an extraordinary adhesive bond strength for the epoxy/IL-MWNT/Co-TPP composites in contrast to neat epoxy. For instance, the lap shear strength of epoxy/IL-MWNT/Co-TPP composites was enhanced by 100% as compared to neat epoxy. Furthermore, the composites were thermally stable for practical utility in electronic applications as inferred from thermogravimetric analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General propagation properties and universal curves are given for double clad single mode fibers with inner cladding index higher or lower than the outer cladding index, using the parameter: inner cladding/core radii ratio. Mode cut-off conditions are also examined for the cases. It is shown that dispersion properties largely differ from the single clad single mode fiber case, leading to large new possibilities for extension of single mode operation for large wavelength tange. Paper demonstrates that how substantially we can extend the single mode operation range by using the raised inner cladding fiber. Throughout we have applied our own computations technique to find out the eigenvalue for a given modes. Detail derivations with all trivial mathematics for eigenmode equation are derived for each case. Paper also demonstrates that there is not much use of using depressed inner cladding fiber. We have also concluded that using the large inner cladding/inner core radius we can significantly increase the single mode operation range for the large wavelength region. (C) 2015 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique strategy was adopted to achieve an ultra-low electrical percolation threshold of multiwall carbon nanotubes (MWNTs) (0.25 wt%) in a classical partially miscible blend of poly-alpha-methylstyrene-co-acrylonitrile and poly(methyl methacrylate) (P alpha MSAN/PMMA), with a lower critical solution temperature. The polymer blend nanocomposite was prepared by standard melt-mixing followed by annealing above the phase separation temperature. In a two-step mixing protocol, MWNTs were initially melt-mixed with a random PS-r-PMMA copolymer and subsequently diluted with 85/15 P alpha MSAN/PMMA blends in the next mixing step. Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhanced electromagnetic interference (EMI) shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT-covered droplets, as compared to the blends without the copolymer, which were transparent to electromagnetic radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic interference shielding (EMI) materials were designed using PC (polycarbonate)/SAN poly(styrene-co-acrylonitrile)] blends containing few-layered graphene nanosheets decorated with nickel nanoparticles (G-Ni). The graphene nanosheets were decorated with nickel nanoparticles via the uniform nucleation of the metal salt precursor on graphene sheets as the substrate. In order to localize the nanoparticles in the PC phase of the PC/SAN blends, a two-step mixing protocol was adopted. In the first step, graphene sheets were mixed with PC in solution and casted into a film, followed by dilution of these PC master batch films with SAN in the subsequent melt extrusion step. The dynamic mechanical properties, ac electrical conductivity, EMI shielding effectiveness and thermal conductivity of the composites were evaluated. The G-Ni nanoparticles significantly improved the electrical and thermal conductivity in the blends. In addition, a total shielding effectiveness (SET) of -29.4 dB at 18 GHz was achieved with G-Ni nanoparticles. Moreover, the blends with G-Ni exhibited an impressive 276% higher thermal conductivity and 29.2% higher elastic modulus with respect to the neat blends.