945 resultados para electrical power conversion


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A comprehensive assessment of the liquidity development in the Iberian power futures market managed by OMIP (“Operador do Mercado Ibérico de Energia, Pólo Português”) in its first 4 years of existence is performed. This market started on July 2006. A regression model tracking the evolution of the traded volumes in the continuous market is built as a function of 12 potential liquidity drivers. The only significant drivers are the traded volumes in OMIP compulsory auctions, the traded volumes in the “Over The Counter” (OTC) market, and the OTC cleared volumes in OMIP clearing house (OMIClear). Furthermore, the enrollment of financial members shows strong correlation with the traded volumes in the continuous market. OMIP liquidity is still far from the levels reached by the most mature European markets (Nord Pool and EEX). The market operator and its clearing house could develop efficient marketing actions to attract new entrants active in the spot market (energy intensive industries, suppliers, and small producers) as well as volumes from the opaque OTC market, and to improve the performance of existing illiquid products. An active dialogue with all the stakeholders (market participants, spot market operator, and supervisory authorities) will help to implement such actions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has been proposed that the use of self-assembled quantum dot (QD) arrays can break the Shockley-Queisser efficiency limit by extending the absorption of solar cells into the low-energy photon range while preserving their output voltage. This would be possible if the infrared photons are absorbed in the two sub-bandgap QD transitions simultaneously and the energy of two photons is added up to produce one single electron-hole pair, as described by the intermediate band model. Here, we present an InAs/Al 0.25Ga 0.75As QD solar cell that exhibits such electrical up-conversion of low-energy photons. When the device is monochromatically illuminated with 1.32 eV photons, open-circuit voltages as high as 1.58 V are measured (for a total gap of 1.8 eV). Moreover, the photocurrent produced by illumination with photons exciting the valence band to intermediate band (VB-IB) and the intermediate band to conduction band (IB-CB) transitions can be both spectrally resolved. The first corresponds to the QD inter-band transition and is observable for photons of energy mayor que 1 eV, and the later corresponds to the QD intra-band transition and peaks around 0.5 eV. The voltage up-conversion process reported here for the first time is the key to the use of the low-energy end of the solar spectrum to increase the conversion efficiency, and not only the photocurrent, of single-junction photovoltaic devices. In spite of the low absorption threshold measured in our devices - 0.25 eV - we report open-circuit voltages at room temperature as high as 1.12 V under concentrated broadband illumination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los sistemas de telealimentación han tomado gran importancia en diferentes campos, incluido el de las telecomunicaciones, algunos ejemplos pueden ser: En la red conmutada telefónica junto con la señal de información y llamada existe una alimentación de 48v que se transmite a través de toda la línea de transmisión hasta los terminales. En algunos ferrocarriles eléctricos, se aprovecha la producción de energía eléctrica cuando un tren baja una cuesta y el motor funciona como generador, devolviendo la energía excedente a la propia catenaria por medio de superposición, y siendo esta recuperada en otro lugar y aprovechada por ejemplo por otro tren que requiere energía. Otro uso en ferrocarriles de la telealimentación es la llamada "tecnología del transpondedor magnético", en la que el tren transmite a las balizas una señal en 27MHz además de otras de información propias, que se convierte en energía útil para estas balizas. En este proyecto pretendemos implementar un pequeño ejemplo de sistema de telealimentación trabajando en 5 MHz (RF). Este sistema transforma una señal de CC en una señal de potencia de CA que podría ser, por ejemplo, transmitida a lo largo de una línea de transmisión o radiada por medio de una antena. Después, en el extremo receptor, esta señal RF se transforma finalmente en DC. El objetivo es lograr el mejor rendimiento de conversión de energía, DC a AC y AC a DC. El sistema se divide en dos partes: El inversor, que es la cadena de conversión DC-AC y el rectificador, que es la cadena de conversión AC-DC. Cada parte va a ser calculada, simulada, implementada físicamente y medida aparte. Finalmente el sistema de telealimentación completo se va a medir mediante la interconexión de cada parte por medio de un adaptador o una línea de transmisión. Por último, se mostrarán los resultados obtenidos. ABSTRACT. Remote powering systems have become very important in different fields, including telecommunications, some examples include: In the switched telephone network with the information signal and call there is a 48v supply that is transmitted across the transmission line to the terminals. In some electric railways, the production of electrical energy is used when a train is coming down a hill and the motor acts as a generator, returning the surplus energy to the catenary itself by overlapping, and this being recovered elsewhere and used by other train. Home TV amplifiers that are located in places (storage, remote locations ..) where there is no outlet, remote power allows to carry information and power signal by the same physical medium, for instance a coax. The AC power signal is transformed into DC at the end to feed the amplifier. In medicine, photovoltaic converters and fiber optics can be used as means for feeding devices implanted in patients. Another use of the remote powering systems on railways is the "magnetic transponder technology", in which the station transmits a beacon signal at 27MHz own as well as other information, which is converted into useful energy to these beacons. In this Project we are pretending to implement a little example of remote powering system working in 5 MHz (RF). This system transform DC into an AC-RF power signal which could be, for instance, transmitted throughout a transmission line or radiated by means of an aerial. At the receiving end, this RF signal is then transformed to DC. The objective is to achieve the best power conversion performance, DC to AC and AC to DC. The system is divided in two parts: The inverter, that is the DC-AC conversion chain and the rectifier that is the AC-DC conversion chain. Each part is going to be calculated, simulated, implemented physically and measured apart. Then the complete remote-powering system is to be measured by interconnecting each part by means of a interconnector or a transmission line. Finally, obtained results will be shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrical power systems are changing their traditional structure, which was based on a little number of large generating power plants placed at great distances from loads by new models that tend to split the big production nodes in many smaller ones. The set of small groups which are located close to consumers and provide safe and quality energy is called distributed generation (DG). The proximity of the sources to the loads reduces losses associated with transportation and increases overall system efficiency. DG also favors the inclusion of renewable energy sources in isolated electrical systems or remote microgrids, because they can be installed where the natural resource is located. In both cases, as weak grids unable to get help from other nearby networks, it is essential to ensure appropriate behavior of DG sources to guarantee power system safety and stability. The grid codes sets out the technical requirements to be fulfilled for the sources connected in these electrical networks. In technical literature it is rather easy to find and compare grid codes for interconnected electrical systems. However, the existing literature is incomplete and sparse regarding isolated electrical systems and this happens due to the difficulties inherent in the pursuit of codes. Some countries have developed their own legislation only for their island territory (as Spain or France), others apply the same set of rules as in mainland, another group of island countries have elaborated a complete grid code for all generating sources and some others lack specific regulation. This paper aims to make a complete review of the state of the art in grid codes applicable to isolated systems, setting the comparison between them and defining the guidelines predictably followed by the upcoming regulations in these particular systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O uso de materiais inteligentes em problemas de controle de vibração tem sido investigado em diversas pesquisas ao longo dos últimos anos. Apesar de que diferentes materiais inteligentes estão disponíveis, o piezelétrico tem recebido grande atenção devido à facilidade de uso como sensores, atuadores, ou ambos simultaneamente. As principais técnicas de controle usando materiais piezoelétricos são os ativos e passivos. Circuitos piezelétricos passivos são ajustados para uma frequência específica e, portanto, a largura de banda efetiva é pequena. Embora os sistemas ativos possam apresentar um bom desempenho no controle de vibração, a quantidade de energia externa e hardware adicionado são questões importantes. As técnicas SSD (Synchronized Switch Damping) foram desenvolvidas como uma alternativa aos controladores passivos e controladores ativos de vibração. Elas podem ser técnicas semi-ativas ou semi-passivas que introduzem um tratamento não linear na tensão elétrica proveniente do material piezelétrico e induz um aumento na conversão de energia mecânica para energia elétrica e, consequentemente, um aumento no efeito de amortecimento. Neste trabalho, o controle piezoelétrico semi-passivo de uma pá piezelétrica engastada é apresentado e comparado com outros controladores. O modelo não linear electromecânico de uma pá com piezocerâmicas incorporados é determinado com base no método variacional-assintótico (VAM). O sistema rotativo acoplado não linear é resolvido no domínio do tempo, utilizando um método de integração alfa-generalizado afim de garantir a estabilidade numérica. As simulações são realizadas para uma vasta gama de velocidades de rotação. Em primeiro lugar, um conjunto de resistências (variando desde a condição de curto-circuito para a condição de circuito aberto) é considerada. O efeito da resistência ótima (que resulta em máximo amortecimento) sobre o comportamento do sistema é investigado para o aumento da velocidade de rotação. Mais tarde, a técnica SSDS é utilizada para amortecer as oscilações da pá com o aumento da velocidade de rotação. Os resultados mostram que a técnica SSDS pode ser um método útil para o controle de vibrações de vigas rotativas não lineares, tais como pás de helicóptero.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Development of transparent oxide semiconductors (TOS) from Earth-abundant materials is of great interest for cost-effective thin film device applications, such as solar cells, light emitting diodes (LEDs), touch-sensitive displays, electronic paper, and transparent thin film transistors. The need of inexpensive or high performance electrode might be even greater for organic photovoltaic (OPV), with the goal to harvest renewable energy with inexpensive, lightweight, and cost competitive materials. The natural abundance of zinc and the wide bandgap ($sim$3.3 eV) of its oxide make it an ideal candidate. In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the microstructure during the thin films growth, resulting in GZO electrode with conductivity greater than 4000 S/cm and transparency greater than 90 %. Similarly, various studies on research and development of Indium Zinc Tin Oxide and Indium Zinc Oxide thin films which can be applied to flexible substrates for next generation solar cells application is presented. In these new TCO systems, understanding the role of crystallographic structure ranging from poly-crystalline to amorphous phase and the influence on the charge transport and optical transparency as well as important surface passivation and surface charge transport properties. Implementation of these electrode based on ZnO on opto-electronics devices such as OLED and OPV is complicated due to chemical interaction over time with the organic layer or with ambient. The problem of inefficient charge collection/injection due to poor understanding of interface and/or bulk property of oxide electrode exists at several oxide-organic interfaces. The surface conductivity, the work function, the formation of dipoles and the band-bending at the interfacial sites can positively or negatively impact the device performance. Detailed characterization of the surface composition both before and after various chemicals treatment of various oxide electrode can therefore provide insight into optimization of device performance. Some of the work related to controlling the interfacial chemistry associated with charge transport of transparent electrodes are discussed. Thus, the role of various pre-treatment on poly-crystalline GZO electrode and amorphous indium zinc oxide (IZO) electrode is compared and contrasted. From the study, we have found that removal of defects and self passivating defects caused by accumulation of hydroxides in the surface of both poly-crystalline GZO and amorphous IZO, are critical for improving the surface conductivity and charge transport. Further insight on how these insulating and self-passivating defects cause charge accumulation and recombination in an device is discussed. With recent rapid development of bulk-heterojunction organic photovoltaics active materials, devices employing ZnO and ZnO based electrode provide air stable and cost-competitive alternatives to traditional inorganic photovoltaics. The organic light emitting diodes (OLEDs) have already been commercialized, thus to follow in the footsteps of this technology, OPV devices need further improvement in power conversion efficiency and stable materials resulting in long device lifetimes. Use of low work function metals such as Ca/Al in standard geometry do provide good electrode for electron collection, but serious problems using low work-function metal electrodes originates from the formation of non-conductive metal oxide due to oxidation resulting in rapid device failure. Hence, using low work-function, air stable, conductive metal oxides such as ZnO as electrons collecting electrode and high work-function, air stable metals such as silver for harvesting holes, has been on the rise. Devices with degenerately doped ZnO functioning as transparent conductive electrode, or as charge selective layer in a polymer/fullerene based heterojunction, present useful device structures for investigating the functional mechanisms within OPV devices and a possible pathway towards improved air-stable high efficiency devices. Furthermore, analysis of the physical properties of the ZnO layers with varying thickness, crystallographic structure, surface chemistry and grain size deposited via various techniques such as atomic layer deposition, sputtering and solution-processed ZnO with their respective OPV device performance is discussed. We find similarity and differences in electrode property for good charge injection in OLEDs and good charge collection in OPV devices very insightful in understanding physics behind device failures and successes. In general, self-passivating surface of amorphous TCOs IZO, ZTO and IZTO forms insulating layer that hinders the charge collection. Similarly, we find modulation of the carrier concentration and the mobility in electron transport layer, namely zinc oxide thin films, very important for optimizing device performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inverters play key roles in connecting sustainable energy (SE) sources to the local loads and the ac grid. Although there has been a rapid expansion in the use of renewable sources in recent years, fundamental research, on the design of inverters that are specialized for use in these systems, is still needed. Recent advances in power electronics have led to proposing new topologies and switching patterns for single-stage power conversion, which are appropriate for SE sources and energy storage devices. The current source inverter (CSI) topology, along with a newly proposed switching pattern, is capable of converting the low dc voltage to the line ac in only one stage. Simple implementation and high reliability, together with the potential advantages of higher efficiency and lower cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to the existing SE-based power conversion technologies.^ The dynamic model is one of the most essential requirements for performance analysis and control design of any engineering system. Thus, in order to have satisfactory operation, it is necessary to derive a dynamic model for the SSBI system. However, because of the switching behavior and nonlinear elements involved, analysis of the SSBI is a complicated task.^ This research applies the state-space averaging technique to the SSBI to develop the state-space-averaged model of the SSBI under stand-alone and grid-connected modes of operation. Then, a small-signal model is derived by means of the perturbation and linearization method. An experimental hardware set-up, including a laboratory-scaled prototype SSBI, is built and the validity of the obtained models is verified through simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to investigate the stability and dynamic behavior of the SSBI system over a typical range of operation. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project is funded by European Research Council in FP7; grant no 259328, 2010 and EPSRC grant no EP/K006428/1, 2013.