922 resultados para electric power systems -- mathematical models
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
This article presents an thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum exergetic manufacturing cost (EMC), based on the Second Law of Thermodynamics. The decision variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as finals conclusions.
Resumo:
The optimized allocation of protective devices in strategic points of the circuit improves the quality of the energy supply and the system reliability index. This paper presents a nonlinear integer programming (NLIP) model with binary variables, to deal with the problem of protective device allocation in the main feeder and all branches of an overhead distribution circuit, to improve the reliability index and to provide customers with service of high quality and reliability. The constraints considered in the problem take into account technical and economical limitations, such as coordination problems of serial protective devices, available equipment, the importance of the feeder and the circuit topology. The use of genetic algorithms (GAs) is proposed to solve this problem, using a binary representation that does (1) or does not (0) show allocation of protective devices (reclosers, sectionalizers and fuses) in predefined points of the circuit. Results are presented for a real circuit (134 busses), with the possibility of protective device allocation in 29 points. Also the ability of the algorithm in finding good solutions while improving significantly the indicators of reliability is shown. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A combinatorial mathematical model in tandem with a metaheuristic technique for solving transmission network expansion planning (TNEP) using an AC model associated with reactive power planning (RPP) is presented in this paper. AC-TNEP is handled through a prior DC model while additional lines as well as VAr-plants are used as reinforcements to cope with real network requirements. The solution of the reinforcement stage can be obtained by assuming all reactive demands are supplied locally to achieve a solution for AC-TNEP and by neglecting the local reactive sources, a reactive power planning (RPP) will be managed to find the minimum required reactive power sources. Binary GA as well as a real genetic algorithm (RCA) are employed as metaheuristic optimization techniques for solving this combinatorial TNEP as well as the RPP problem. High quality results related with lower investment costs through case studies on test systems show the usefulness of the proposal when working directly with the AC model in transmission network expansion planning, instead of relaxed models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This article presents a new approach to minimize the losses in electrical power systems. This approach considers the application of the primal-dual logarithmic barrier method to voltage magnitude and tap-changing transformer variables, and the other inequality constraints are treated by augmented Lagrangian method. The Lagrangian function aggregates all the constraints. The first-order necessary conditions are reached by Newton's method, and by updating the dual variables and penalty factors. Test results are presented to show the good performance of this approach.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Teaching a course of special electric loads in a continuing education program to power engineers is a difficult task because they are not familiarized with switching topology circuits. Normally, in a typical program, many hours are dedicated to explain the thyristors switching sequence and to draw the converter currents and terminal voltages waveforms for different operative conditions. This work presents teaching support software in order to optimize the time spent in this task and, mainly to benefit the assimilation of the proposed subjects, studying the static converter under different non-ideal operative conditions.
Resumo:
This work presents an algorithm for the security control of electric power systems using control actions like generation reallocation, determined by sensitivity analysis (linearized model) and optimization by neural networks. The model is developed taking into account the dynamic network aspects. The preventive control methodology is developed by means of sensitivity analysis of the security margin related with the mechanical power of the system synchronous machines. The reallocation power in each machine is determined using neural networks. The neural network used in this work is of Hopfield type. These networks are dedicated electric circuits which simulate the constraint set and the objective function of an optimization problem. The advantage of using these networks is the higher speed in getting the solutions when compared to conventional optimization algorithms due to the great convergence rate of the process and the facility of the method parallelization. Then, the objectives are: formulate and investigate these networks implementations in determining. The generation reallocation in digital computers. Aiming to illustrate the proposed methodology an application considering a multi-machine system is presented.
Resumo:
Substitution of fuzzy logic control in an electrical system normally controlled by proportional-integral frequency was studied and analyzed. A linear model of an electrical system, the concepts which govern the theory of fuzzy logic, and the application of this theory to systems control, are briefly presented. The methodology of fuzzy logic was then applied to develop a model for an electrical energy system. The results of the simulation demonstrated that fuzzy logic control eliminated the area frequency error and permitted that only the area experiencing an increase in charge responds to this variation. Based on the results, it is concluded that control based on fuzzy logic is simple, is easy to maintain, is of low cost, and can be used to substitute traditional velocity controllers.
Resumo:
A combined methodology consisting of successive linear programming (SLP) and a simple genetic algorithm (SGA) solves the reactive planning problem. The problem is divided into operating and planning subproblems; the operating subproblem, which is a nonlinear, ill-conditioned and nonconvex problem, consists of determining the voltage control and the adjustment of reactive sources. The planning subproblem consists of obtaining the optimal reactive source expansion considering operational, economical and physical characteristics of the system. SLP solves the optimal reactive dispatch problem related to real variables, while SGA is used to determine the necessary adjustments of both the binary and discrete variables existing in the modelling problem. Once the set of candidate busbars has been defined, the program implemented gives the location and size of the reactive sources needed, if any, to maintain the operating and security constraints.
Resumo:
This paper presents the Benders decomposition technique and Branch and Bound algorithm used in the reactive power planning in electric energy systems. The Benders decomposition separates the planning problem into two subproblems: an investment subproblem (master) and the operation subproblem (slave), which are solved alternately. The operation subproblem is solved using a successive linear programming (SLP) algorithm while the investment subproblem, which is an integer linear programming (ILP) problem with discrete variables, is resolved using a Branch and Bound algorithm especially developed to resolve this type of problem.