927 resultados para egg parasitoids
Resumo:
Fish bioenergetics models estimate relationships between energy budgets and environmental and physiological variables. This study presents a generic rockfish (Sebastes) bioenergetics model and estimates energy consumption by northern California blue rockf ish (S. mystinus) under average (baseline) and El Niño conditions. Compared to males, female S. mystinus required more energy because they were larger and had greater reproductive costs. When El Niño conditions (warmer temperatures; lower growth, condition, and fecundity) were experienced every 3−7 years, energy consumption decreased on an individual and a per-recruit basis in relation to baseline conditions, but the decrease was minor (<4% at the individual scale, <7% at the per-recruit scale) compared to decreases in female egg production (12−19% at the individual scale, 15−23% at the per-recruit scale). When mortality in per-recruit models was increased by adding fishing, energy consumption in El Niño models grew more similar to that seen in the baseline model. However, egg production decreased significantly — an effect exacerbated by the frequency of El Niño events. Sensitivity analyses showed that energy consumption estimates were most sensitive to respiration parameters, energy density, and female fecundity, and that estimated consumption increased as parameter uncertainty increased. This model provides a means of understanding rockfish trophic ecology in the context of community structure and environmental change by synthesizing metabolic, demographic, and environmental information. Future research should focus on acquiring such information so that models like the bioenergetics model can be used to estimate the effect of climate change, community shifts, and different harvesting strategies on rockfish energy demands.
Resumo:
The influences of age, size, and condition of spawning females on fecundity and oocyte quality were analyzed for the Patagonian stock of Argentine Hake (Merluccius hubbsi). Samples of mature females were collected in the spawning area as part of 2 research surveys conducted in January 2010 and 2011, during the peak of the reproductive season. Batch fecundity (BF) ranged between 40,500 (29 cm total length [TL]) and 2,550,000 (95 cm TL) hydrated oocytes, and was positively correlated with TL, gutted weight, age, hepatosomatic index (HSI), and the relative condition factor (Kn). Relative fecundity ranged between 85 and 1040 hydrated oocytes g–1 and showed significant positive relationships with gutted weight, HSI, and Kn; however, coefficients of determination were low for all regressions. Dry weights of samples of 100 hydrated oocytes ranged between 1.8 and 3.95 mg and were positively correlated with all variables analyzed, including batch and relative fecundity. Multiple regression models created with data of the morphophysiological characteristics of females supported maternal influences on fecundity and egg weights. Within the studied size range (29–95 cm TL), larger individuals had better somatic and egg condition, mainly revealed by higher HSI and hydrated oocytes with larger oil droplets (275.71μm [standard error 1.49]). These results were associated with the higher feeding activity of larger females during the spawning season in comparison with the feeding activity of young individuals (<5 years old); the better nutritional state of larger females, assumed to result from more feeding, was conducive to greater production of high-quality eggs.
Resumo:
The anchoveta Engraulis ringens is widely distributed along the eastern South Pacific (from 4° to 42°S; Serra et al., 1979) and it has also supported one of the largest fisheries of the world over the last four decades. However, there are few interpopulation comparisons for either the adult or the younger stages. Reproductive traits, such as fecundity or spawning season length, are known to vary with latitude for some fish species (Blaxter and Hunter, 1982; Conover, 1990; Fleming and Gross, 1990; Castro and Cowen, 1991), and latitudinal trends for some early life history traits, such as egg size and larval growth rates, have been reported for others clupeiforms and other fishes (Blaxter and Hempel, 1963; Ciechomski, 1973; Imai and Tanaka, 1987, Conover 1990, Houde 1989). However, there is no published information on potential latitudinal trends during the adult or the early life history of the anchoveta, even though this type of information may help in understanding recruitment variability, especially during recurring large scale events (such as El Niño or La Niña) that affect the entire species range.
Resumo:
Loligo opalescens live less than a year and die after a short spawning period before all oocytes are expended. Potential fecundity (EP), the standing stock of all oocytes just before the onset of spawning, increased with dorsal mantle length (L), where EP = 29.8L. For the average female squid (L of 129 mm), EP was 3844 oocytes. During the spawning period, no oogonia were produced; therefore the standing stock of oocytes declined as they were ovulated. This decline in oocytes was correlated with a decline in mantle condition and an increase in the size of the smallest oocyte in the ovary. Close agreement between the decline in estimated body weight and standing stock of oocytes during the spawning period indicated that maturation and spawning of eggs could largely, if not entirely, be supported by the conversion of energy reserves in tissue. Loligo opalescens, newly recruited to the spawning population, ovulated about 36% of their potential fecundity during their first spawning day and fewer ova were released in subsequent days. Loligo opalescens do not spawn all of their oocytes; a small percentage of the spawning population may live long enough to spawn 78% of their potential fecundity. Loligo opalescens are taken in a spawning grounds fishery off California, where nearly all of the catch are mature spawning adults. Thirty-three percent of the potential fecundity of L. opalescens was deposited before they were taken by the fishery (December 1998−99). This observation led to the development of a management strategy based on monitoring the escapement of eggs from the fishery. The strategy requires estimation of the fecundity realized by the average squid in the population which is a function of egg deposition and mortality rates. A model indicated that the daily total mortality rate on the spawning ground may be about 0.45 and that the average adult may live only 1.67 days after spawning begins. The rate at which eggs escape the fishery was modeled and the sensitivity of changing daily rates of fishing mortality, natural mortality, and egg deposition was examined. A rapid method for monitoring the fecundity of the L. opalescens catch was developed.