809 resultados para e-learning-systems


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last two decades, there was a proliferation of programming exercise formats that hinders interoperability in automatic assessment. In the lack of a widely accepted standard, a pragmatic solution is to convert content among the existing formats. BabeLO is a programming exercise converter providing services to a network of heterogeneous e-learning systems such as contest management systems, programming exercise authoring tools, evaluation engines and repositories of learning objects. Its main feature is the use of a pivotal format to achieve greater extensibility. This approach simplifies the extension to other formats, just requiring the conversion to and from the pivotal format. This paper starts with an analysis of programming exercise formats representative of the existing diversity. This analysis sets the context for the proposed approach to exercise conversion and to the description of the pivotal data format. The abstract service definition is the basis for the design of BabeLO, its components and web service interface. This paper includes a report on the use of BabeLO in two concrete scenarios: to relocate exercises to a different repository, and to use an evaluation engine in a network of heterogeneous systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of the regional level in research has risen in the last few decades and a vast literature in the fields of, for instance, evolutionary and institutional economics, network theories, innovations and learning systems, as well as sociology, has focused on regional level questions. Recently the policy makers and regional actors have also began to pay increasing attention to the knowledge economy and its needs, in general, and the connectivity and support structures of regional clusters in particular. Nowadays knowledge is generally considered as the most important source of competitive advantage, but even the most specialised forms of knowledge are becoming a short-lived resource for example due to the accelerating pace of technological change. This emphasizes the need of foresight activities in national, regional and organizational levels and the integration of foresight and innovation activities. In regional setting this development sets great challenges especially in those regions having no university and thus usually very limited resources for research activities. Also the research problem of this dissertation is related to the need to better incorporate the information produced by foresight process to facilitate and to be used in regional practice-based innovation processes. This dissertation is a constructive case study the case being Lahti region and a network facilitating innovation policy adopted in that region. Dissertation consists of a summary and five articles and during the research process a construct or a conceptual model for solving this real life problem has been developed. It is also being implemented as part of the network facilitating innovation policy in the Lahti region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les nouveaux dispositifs de formation à distance représentent de nouvelles modalités de formation dans l’enseignement supérieur. Ces dispositifs impliquent l’utilisation d’environnements pédagogiques adaptés qui favorisent les situations de travail collaboratif. La collaboration au sein de ces outils résulte non seulement des interactions entre les étudiants, mais aussi des modalités de travail et d’accompagnement mises en place au préalable par les enseignants, notamment pour que les interactions fassent sens pour les étudiants. Ainsi, la question qui guide cette étude de cas est la suivante. Comment se caractérise le travail collaboratif des étudiants dans les blogs dans le cadre du cours ETA 6538? Plus précisément, nous cherchons à comprendre comment les étudiants collaborent à l'intérieur des blogs et quels sont les indicateurs propices à cette collaboration. À l’issue de notre étude, nous proposons une liste de recommandations pour favoriser la mise en place et le déroulement du travail collaboratif au sein des blogs, ainsi que des indicateurs pouvant servir à l’évaluation de la collaboration. Les concepts exploités dans ce mémoire sont relatifs au processus d'acquisition de savoir à partir de la collaboration émanant des interactions au sein des TIC, des dispositifs d’apprentissage en ligne et plus particulièrement des blogues. Nous avons utilisé une méthode de type à la fois quantitative et qualitative. Les blogs de huit étudiants ont été analysés. Les résultats de ces analyses montrent que les étudiants ont collaboré au sein des blogs et qu’ensemble, ils ont fait émergé de nouveaux savoirs et connaissances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die vorliegende Dissertation betrachtet institutionsinterne lokale (Critical-)Incident-Reporting-Systeme ((C)IRS) als eine Möglichkeit zum Lernen aus Fehlern und unerwünschten kritischen Ereignissen (sogenannte Incidents) im Krankenhaus. Die Notwendigkeit aus Incidents zu lernen, wird im Gesundheitswesen bereits seit den 1990er Jahren verstärkt diskutiert. Insbesondere risikoreichen Organisationen, in denen Incidents fatale Konsequenzen haben können, sollten umfassende Strategien erarbeiten, die sie vor Fehlern und unerwünschten Ereignissen schützen und diese als Lernpotenzial nutzen können. Dabei können lokale IRS als ein zentraler Bestandteil des Risikomanagements und freiwillige Dokumentationssysteme im Krankenhaus ein Teil dieser Strategie sein. Sie können eine Ausgangslage für die systematische Erfassung und Auswertung von individuellen Lerngelegenheiten und den Transfer zurück in die Organisation schaffen. Hierfür sind eine lernförderliche Gestaltung, Implementierung und Einbettung lokaler IRS eine wichtige Voraussetzung. Untersuchungen über geeignete lerntheoretisch fundierte und wirkungsvolle IRS-Modelle und empirische Daten fehlen bisher im deutschsprachigen Raum. Einen entsprechenden Beitrag leistet die vorliegende Fallstudie in einem Schweizer Universitätsspital (800 Betten, 6.100 Mitarbeitende). Zu diesem Zweck wurde zuerst ein Anforderungsprofil an lernförderliche IRS aus der Literatur abgeleitet. Dieses berücksichtigt zum einen literaturbasierte Kriterien für die Gestaltung und Nutzung aus der IRS-Literatur, zum anderen die aus der Erziehungswissenschaft und Arbeitspsychologie entlehnten Gestaltungsbedingungen und Erfolgskriterien an organisationales Lernen. Das Anforderungsprofil wurde in drei empirischen Teilstudien validiert und entsprechend adaptiert. In der ersten empirischen Teilstudie erfolgte eine Standortbestimmung der lokalen IRS. Die Erhebung erfolgte in vier Kliniken mittels Dokumentenanalyse, leitfadengestützter Interviews (N=18), sieben strukturierter Gruppendiskussionen und teilnehmender Beobachtungen über einen Zeitraum von 22 Monaten. Erfolgskritische IRS-Merkmale wurden identifiziert mit dem Ziel einer praxisgerechten lernförderlichen Systemgestaltung und Umsetzung von Incident Reporting unter Betrachtung von organisationalen Rahmenbedingungen, Lernpotenzialen und Barrieren. Die zweite Teilstudie untersuchte zwei Fallbeispiele organisationalen Lernens mittels Prozessbegleitung, welche zu einem verwechslungssicheren Design bei einem Medizinalprodukt und einer verbesserten Patientenidentifikation in Zusammenhang mit Blutentnahmen führten. Für das organisationale Lernen im Spital wurden dabei Chancen, Barrieren und Gestaltungsansätze abgeleitet, wie erwünschte Veränderungen und Lernen unter Nutzung von IRS initiiert werden können und dabei ein besseres Gesundheitsresultat erreicht werden kann. Die dritte Teilstudie überprüfte, inwiefern die Nutzung und Implementierung lokaler IRS mittels einer Mitarbeitervollbefragung zur Sicherheitskultur gefördert werden kann. Hierfür wurde eine positive Interaktion, zwischen einer starken Sicherheitskultur und der Bereitschaft ein IRS zu implementieren und Incidents zu berichten, angenommen. Zum Einsatz kam eine deutschsprachige Version des Hospital Survey on Patient Safety Culture (Patientensicherheitsklimainventar) mit einem Rücklauf von 46.8% (2.897 gültige Fragebogen). In 23 von 37 Kliniken führte laut einer Nachbefragung die Sicherheitskulturbefragung zum Implementierungsentscheid. Dies konnte durch Monitoring der IRS-Nutzung bestätigt werden. Erstmals liegen mit diesen Studien empirische Daten für eine wirkungsvolle und lernförderliche Gestaltung und Umsetzung von lokalen IRS am Beispiel einer Schweizer Gesundheitsorganisation vor. Die Ergebnisse der Arbeit zeigen Chancen und Barrieren für IRS als Berichts- und Lernsysteme im Krankenhaus auf. Als Resultat unsachgemäss gestalteter und implementierter IRS konnte dabei vor allem Lernverhinderung infolge IRS aufgezeigt werden. Blinder Aktionismus und eine fehlende Priorisierung von Patientensicherheit, unzureichende Kompetenzen, Qualifikationen und Ressourcen führten dabei zur Schaffung neuer Fehlerquellen mit einer Verstärkung des Lernens erster Ordnung. Eine lernförderliche Gestaltung und Unterhaltung der lokalen IRS, eingebettet in eine klinikumsweite Qualitäts- und Patientensicherheitsstrategie, erwiesen sich hingegen als wirkungsvoll im Sinne eines organisationalen Lernens und eines kontinuierlichen Verbesserungsprozesses. Patientensicherheitskulturbefragungen erwiesen sich zudem bei entsprechender Einbettung als effektives Instrument, um die Implementierung von IRS zu fördern. Zwölf Thesen zeigen in verdichteter Form auf, welche Gestaltungsprinzipien für IRS als Instrument des organisationalen Lernens im Rahmen des klinischen Risikomanagements und zur Förderung einer starken Patientensicherheitskultur zu berücksichtigen sind. Die Erkenntnisse aus den empirischen Studien münden in ein dialogorientiertes Rahmenmodell organisationalen Lernens unter Nutzung lokaler IRS. Die Arbeit zeigt damit zum einen Möglichkeiten für ein Lernen auf den verschiedenen Ebenen der Organisation auf und weist auf die Notwendigkeit einer (Re-)Strukturierung der aktuellen IRS-Diskussion hin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las organizaciones en la actualidad deben encontrar diferentes maneras de sobrevivir en un tiempo de rápida transformación. Uno de los mecanismos usados por las empresas para adaptarse a los cambios organizacionales son los sistemas de control de gestión, que a su vez permiten a las organizaciones hacer un seguimiento a sus procesos, para que la adaptabilidad sea efectiva. Otra variable importante para la adaptación es el aprendizaje organizacional siendo el proceso mediante el cual las organizaciones se adaptan a los cambios del entorno, tanto interno como externo de la compañía. Dado lo anterior, este proyecto se basa en la extracción de documentación soporte valido, que permita explorar las interacciones entre estos dos campos, los sistemas de control de gestión y el aprendizaje organizacional, además, analizar el impacto de estas interacciones en la perdurabilidad organizacional. ​

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La creación de conocimiento al interior de las organizaciones es visible mediante la dirección adecuada del conocimiento de los individuos, sin embargo, cada individuo debe interactuar de tal manera que forme una red o sistema de conocimiento organizacional que consolide a largo plazo las empresas en el entorno en el que se desenvuelven. Este documento revisa elementos centrales acerca de la gestión de conocimiento visto desde varios autores y perspectivas e identifica puntos clave para diseñar un modelo de gestión de conocimiento para una empresa del sector de insumos químicos para la industria farmacéutica, cosmética y de alimentos de la ciudad de Bogotá.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Siguiendo un marco teórico integrado por varios autores entorno a los sistemas de control de gestión a lo largo de varias décadas, este trabajo pretende estudiar y contrastar la relación entre el desarrollo de dichos sistemas y los recursos y capacidades. Para tal fin, se desarrolló un estudio de caso en Teleperformance Colombia (TC), una empresa dedicada a prestación de servicio de tercerización de procesos o business process outsourcing. En el estudio se establecieron dos variables para evaluar el desarrollo de sistema de control de gestión: el diseño y el uso. A su vez, para cada uno de ellos, se definieron los indicadores y preguntas que permitieran realizar la observación y posterior análisis. De igual manera, se seleccionaron los recursos y capacidades más importantes para el desarrollo del negocio: innovación, aprendizaje organizacional y capital humano. Sobre estos se validó la existencia de relación con el SCG implementado en TC. La información obtenida fue analizada y contrastada a través de pruebas estadísticas ampliamente utilizadas en este tipo de estudios en las ciencias sociales. Finalmente, se analizaron seis posibles relaciones de las cuales, solamente se ratificó el relacionamiento positivo entre uso de sistema de control gestión y el recurso y capacidad capital humano. El resto de relacionamientos, refutaron los planteamientos teóricos que establecían cierta influencia de los sistemas de control de gestión sobre recursos y capacidades de innovación y aprendizaje organizacional.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently major processor manufacturers have announced a dramatic shift in their paradigm to increase computing power over the coming years. Instead of focusing on faster clock speeds and more powerful single core CPUs, the trend clearly goes towards multi core systems. This will also result in a paradigm shift for the development of algorithms for computationally expensive tasks, such as data mining applications. Obviously, work on parallel algorithms is not new per se but concentrated efforts in the many application domains are still missing. Multi-core systems, but also clusters of workstations and even large-scale distributed computing infrastructures provide new opportunities and pose new challenges for the design of parallel and distributed algorithms. Since data mining and machine learning systems rely on high performance computing systems, research on the corresponding algorithms must be on the forefront of parallel algorithm research in order to keep pushing data mining and machine learning applications to be more powerful and, especially for the former, interactive. To bring together researchers and practitioners working in this exciting field, a workshop on parallel data mining was organized as part of PKDD/ECML 2006 (Berlin, Germany). The six contributions selected for the program describe various aspects of data mining and machine learning approaches featuring low to high degrees of parallelism: The first contribution focuses the classic problem of distributed association rule mining and focuses on communication efficiency to improve the state of the art. After this a parallelization technique for speeding up decision tree construction by means of thread-level parallelism for shared memory systems is presented. The next paper discusses the design of a parallel approach for dis- tributed memory systems of the frequent subgraphs mining problem. This approach is based on a hierarchical communication topology to solve issues related to multi-domain computational envi- ronments. The forth paper describes the combined use and the customization of software packages to facilitate a top down parallelism in the tuning of Support Vector Machines (SVM) and the next contribution presents an interesting idea concerning parallel training of Conditional Random Fields (CRFs) and motivates their use in labeling sequential data. The last contribution finally focuses on very efficient feature selection. It describes a parallel algorithm for feature selection from random subsets. Selecting the papers included in this volume would not have been possible without the help of an international Program Committee that has provided detailed reviews for each paper. We would like to also thank Matthew Otey who helped with publicity for the workshop.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion for the finite mixture model. Since the constraint on the mixing coefficients of the finite mixture model is on the multinomial manifold, we use the well-known Riemannian trust-region (RTR) algorithm for solving this problem. The first- and second-order Riemannian geometry of the multinomial manifold are derived and utilized in the RTR algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with an accuracy competitive with those of existing kernel density estimators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data, and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established state-of-the-art methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing costs and competitive business strategies are pushing sawmill enterprises to make an effort for optimization of their process management. Organizational decisions mainly concentrate on performance and reduction of operational costs in order to maintain profit margins. Although many efforts have been made, effective utilization of resources, optimal planning and maximum productivity in sawmill are still challenging to sawmill industries. Many researchers proposed the simulation models in combination with optimization techniques to address problems of integrated logistics optimization. The combination of simulation and optimization technique identifies the optimal strategy by simulating all complex behaviours of the system under consideration including objectives and constraints. During the past decade, an enormous number of studies were conducted to simulate operational inefficiencies in order to find optimal solutions. This paper gives a review on recent developments and challenges associated with simulation and optimization techniques. It was believed that the review would provide a perfect ground to the authors in pursuing further work in optimizing sawmill yard operations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mobile learning involves use of mobile devices to participate in learning activities. Most elearning activities are available to participants through learning systems such as learning content management systems (LCMS). Due to certain challenges, LCMS are not equally accessible on all mobile devices. This study investigates actual use, perceived usefulness and user experiences of LCMS use on mobile phones at Makerere University in Uganda. The study identifies challenges pertaining to use and discusses how to improve LCMS use on mobile phones. Such solutions are a cornerstone in enabling and improving mobile learning. Data was collected by means of focus group discussions, an online survey designed based on the Technology Acceptance Model (TAM), and LCMS log files of user activities. Data was collected from two courses where Moodle was used as a learning platform. The results indicate positive attitudes towards use of LCMS on phones but also huge challenges whichare content related and technical in nature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work analyses the application of the so-called corporative university model in business enterprises in Brazil. What are the impacts observed in the training and development structures in companies that adopt learning systems defined within the corporative university? It aims to offer an analytical basis to those interested in the educational tendency of knowledge management as a strategy for a sustained competitive edge in business nowadays.