956 resultados para dynamic response optimization
Resumo:
In the framework of multibody dynamics, the path motion constraint enforces that a body follows a predefined curve being its rotations with respect to the curve moving frame also prescribed. The kinematic constraint formulation requires the evaluation of the fourth derivative of the curve with respect to its arc length. Regardless of the fact that higher order polynomials lead to unwanted curve oscillations, at least a fifth order polynomials is required to formulate this constraint. From the point of view of geometric control lower order polynomials are preferred. This work shows that for multibody dynamic formulations with dependent coordinates the use of cubic polynomials is possible, being the dynamic response similar to that obtained with higher order polynomials. The stabilization of the equations of motion, always required to control the constraint violations during long analysis periods due to the inherent numerical errors of the integration process, is enough to correct the error introduced by using a lower order polynomial interpolation and thus forfeiting the analytical requirement for higher order polynomials.
Critical Velocity obtained using Simplified Models of the Railway Track: Viability and Applicability
Resumo:
Increased demands on the capacity of the railway network gave rise to new issues related to the dynamic response of railway tracks subjected to moving vehicles. Thus, it becomes important to evaluate the applicability of traditionally used simplified models which have a closed form solution. Regarding simplified models, transversal vibrations of a beam on a visco-elastic foundation subjected to a moving load are considered. Governing equations are obtained by Hamilton’s principle. Shear distortion, rotary inertia and effect of axial force are accounted for. The load is introduced as a time varying force moving at a constant velocity. Transversal vibrations induced by the load are solved by the normal-mode analysis. Reflected waves at the extremities of the full beam are avoided by introduction of semi-infinite elements. Firstly, the critical velocity obtained from this model is compared with results of an undamped Euler- Bernoulli formulation with zero axial force. Secondly, a finite element model in ABAQUS is examined. The new contribution lies in the introduction of semi- infinite elements and in the first step to a systematic comparison, which have not been published so fa
Resumo:
Este trabalho aborda uma série de conceitos base no que concerne à ação do vento sobre edifícios altos, começando por ser estabelecidas algumas considerações fundamentais acerca da circulação do vento na camada limite atmosférica bem como acerca da sua interação com as estruturas. É feita uma análise da metodologia proposta pelo Eurocódigo 1 para quantificação de tal ação sobre os edifícios, bem como é elaborada uma comparação da metodologia proposta por este com a metodologia ainda vigente na regulamentação portuguesa. Foram modelados computacionalmente, com recurso a um programa de cálculo estrutural automático, três edifícios altos com diferente secção geométrica em planta que servirão de caso de estudo. Para estes mesmos edifícios são aplicados os dois regulamentos considerados com vista à determinação de esforços e deslocamentos. Sendo os edifícios altos um género de estruturas capazes de ser excitadas dinamicamente perante a ação do vento, adota-se uma metodologia para quantificação desta ação de forma dinâmica na direção do escoamento. Assim, é obtida a resposta dinâmica ao longo do tempo em termos de deslocamentos e acelerações para o caso de estudo considerado e é feita uma comparação da resposta do edifício quadrangular sob a ação dinâmica do vento com a resposta estática regulamentar.
Resumo:
The present paper focuses on a damage identification method based on the use of the second order spectral properties of the nodal response processes. The explicit dependence on the frequency content of the outputs power spectral densities makes them suitable for damage detection and localization. The well-known case study of the Z24 Bridge in Switzerland is chosen to apply and further investigate this technique with the aim of validating its reliability. Numerical simulations of the dynamic response of the structure subjected to different types of excitation are carried out to assess the variability of the spectrum-driven method with respect to both type and position of the excitation sources. The simulated data obtained from random vibrations, impulse, ramp and shaking forces, allowed to build the power spectrum matrix from which the main eigenparameters of reference and damage scenarios are extracted. Afterwards, complex eigenvectors and real eigenvalues are properly weighed and combined and a damage index based on the difference between spectral modes is computed to pinpoint the damage. Finally, a group of vibration-based damage identification methods are selected from the literature to compare the results obtained and to evaluate the performance of the spectral index.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
The main objective of this study was to explore the suitability of Vitis vinifera as a raw material and alkaline lignin as a natural binder for fiberboard manufacturing. In the first step, Vitis vinifera was steam- exploded through a thermo-mechanical vapor process in a batch reactor, and the obtained pulp was dried, ground, and pressed to produce the boards. The effects of pretreatment factors and pressing conditions on the chemical composition of the fibers and the physico-mechanical properties of binderless fiberboards were evaluated, and the conditions that optimize these properties were found. A response surface method based on a central composite design and multiple-response optimization was used. The variables studied and their respective variation ranges were: pretreatment temperature (Tr: 190-210ºC), pretreatment time (tr: 5-10 min), pressing temperature (Tp: 190-210ºC), pressing pressure (Pp: 8-16MPa), and pressing time (tp: 3-7min). The results of the optimization step show that binderless fiberboards have good water resistance and weaker mechanical properties. In the second step, fiberboards based on alkaline lignin and Vitis vinifera pulp produced at the optimal conditions determined for binderless fiberboards were prepared and their physico-mechanical properties were tested. Our results show that the addition of about 15% alkaline lignin leads to the production of fiberboards that fully meet the requirements of the relevant standard specifications
Resumo:
We analyze the labor market effects of neutral and investment-specific technology shocks along the intensive margin (hours worked) and the extensive margin (unemployment). We characterize the dynamic response of unemployment in terms of the job separation and the job finding rate. Labor market adjustments occur along the extensive margin in response to neutral shocks, along the intensive margin in response to investment specific shocks. The job separation rate accounts for a major portion of the impact response of unemployment. Neutral shocks prompt a contemporaneous increase in unemployment because of a sharp rise in the separation rate. This is prolonged by a persistent fall in the job finding rate. Investment specific shocks rise employment and hours worked. Neutral shocks explain a substantial portion of the volatility of unemployment and output; investment specific shocks mainly explain hours worked volatility. This suggests that neutral progress is consistent with Schumpeterian creative destruction, while investment-specific progress operates as in a neoclassical growth model.
Resumo:
The choice network revenue management model incorporates customer purchase behavioras a function of the offered products, and is the appropriate model for airline and hotel networkrevenue management, dynamic sales of bundles, and dynamic assortment optimization.The optimization problem is a stochastic dynamic program and is intractable. A certainty-equivalencerelaxation of the dynamic program, called the choice deterministic linear program(CDLP) is usually used to generate dyamic controls. Recently, a compact linear programmingformulation of this linear program was given for the multi-segment multinomial-logit (MNL)model of customer choice with non-overlapping consideration sets. Our objective is to obtaina tighter bound than this formulation while retaining the appealing properties of a compactlinear programming representation. To this end, it is natural to consider the affine relaxationof the dynamic program. We first show that the affine relaxation is NP-complete even for asingle-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a newcompact linear program that approximates the dynamic programming value function betterthan CDLP, provably between the CDLP value and the affine relaxation, and often comingclose to the latter in our numerical experiments. When the segment consideration sets overlap,we show that some strong equalities called product cuts developed for the CDLP remain validfor our new formulation. Finally we perform extensive numerical comparisons on the variousbounds to evaluate their performance.
Resumo:
We analyze the labor market effects of neutral and investment-specific technologyshocks along the intensive margin (hours worked) and the extensive margin(unemployment). We characterize the dynamic response of unemploymentin terms of the job separation and the job finding rate. Labor market adjustmentsoccur along the extensive margin in response to neutral shocks, along theintensive margin in response to investment specific shocks. The job separationrate accounts for a major portion of the impact response of unemployment. Neutralshocks prompt a contemporaneous increase in unemployment because of asharp rise in the separation rate. This is prolonged by a persistent fall in thejob finding rate. Investment specific shocks rise employment and hours worked.Neutral shocks explain a substantial portion of the volatility of unemploymentand output; investment specific shocks mainly explain hours worked volatility.This suggests that neutral progress is consistent with Schumpeterian creative destruction,while investment-specific progress operates as in a neoclassical growthmodel.
Resumo:
The choice network revenue management (RM) model incorporates customer purchase behavioras customers purchasing products with certain probabilities that are a function of the offeredassortment of products, and is the appropriate model for airline and hotel network revenuemanagement, dynamic sales of bundles, and dynamic assortment optimization. The underlyingstochastic dynamic program is intractable and even its certainty-equivalence approximation, inthe form of a linear program called Choice Deterministic Linear Program (CDLP) is difficultto solve in most cases. The separation problem for CDLP is NP-complete for MNL with justtwo segments when their consideration sets overlap; the affine approximation of the dynamicprogram is NP-complete for even a single-segment MNL. This is in contrast to the independentclass(perfect-segmentation) case where even the piecewise-linear approximation has been shownto be tractable. In this paper we investigate the piecewise-linear approximation for network RMunder a general discrete-choice model of demand. We show that the gap between the CDLP andthe piecewise-linear bounds is within a factor of at most 2. We then show that the piecewiselinearapproximation is polynomially-time solvable for a fixed consideration set size, bringing itinto the realm of tractability for small consideration sets; small consideration sets are a reasonablemodeling tradeoff in many practical applications. Our solution relies on showing that forany discrete-choice model the separation problem for the linear program of the piecewise-linearapproximation can be solved exactly by a Lagrangian relaxation. We give modeling extensionsand show by numerical experiments the improvements from using piecewise-linear approximationfunctions.
Resumo:
Joint Publications from Iowa Engineering Experiment Station - Bulletin No. 188 and Iowa Highway Research Board - Bulletin No. 17. In the design of highway bridges, the 'static live load is multiplied by a factor to compensate for the dynamic effect of moving vehicles. This factor, commonly referred to as an impact factor, is intended to provide for the dynamic response of the bridge to moving loads and suddenly applied forces. Many investigators have published research which contradicts the current impact formula 1,4,17. Some investigators feel that the problem of impact deals not only with the increase in over-all static live load but that it is an integral part of a dynamic load distribution problem. The current expanded highway program with the large number of bridge structures required emphasizes the need for investigating some of the dynamic behavior problems which have been generally ignored by highway engineers. These problems generally result from the inability of a designer to predict the dynamic response of a bridge structure. Many different investigations have been made of particular portions of the overall dynamic problem. The results of these varied investigations are inevitably followed by a number of unanswered questions. Ironically, many of the unanswered questions are those which are of immediate concern in the design of highway bridges, and this emphasizes the need for additional research on the problem of impact.
Resumo:
Control applications of switched mode power supplies have been widely investigated. The main objective ofresearch and development (R&D) in this field is always to find the most suitable control method to be implemented in various DC/DC converter topologies. Inother words, the goal is to select a control method capable of improving the efficiency of the converter, reducing the effect of disturbances (line and load variation), lessening the effect of EMI (electro magnetic interference), and beingless effected by component variation. The main objective of this research work is to study different control methods implemented in switched mode power supplies namely (PID control, hysteresis control, adaptive control, current programmed control, variable structure control (VSC), and sliding mode control (SMC). The advantages and drawbacks of each control method are given. Two control methods, the PID and the SMC are selected and their effects on DC/DC (Buck, Boost, and Buck-Boost) converters are examined. Matlab/SimulinkTM is used to implement PID control method in DC/DC Buck converter and SMC in DC/DC (Buck, and Buck Boost) converters. For the prototype, operational amplifiers (op-amps) are used to implement PID control in DC/DC Buck converter. For SMC op-amps are implemented in DC/DC Buck converter and dSPACETM is used to control the DC/DC Buck-Boost converter. The SMC can be applied to the DC/DC (Buck, Boost, and Buck-Boost) converters. A comparison of the effects of the PID control and the SMC on the DC/DC Buck converter response in steady state, under line variations, load variations, and different component variations is performed. Also the Conducted RF-Emissions between the PID and SMC DC/DC Buck Converter are compared. The thesis shows that, in comparison with the PID control, the SMC provides better steady-state response, better dynamic response, less EMI, inherent order reduction, robustness against system uncertainty disturbances, and an implicit stability proof. Giving a better steady-state and dynamic response, the SMC is implemented in a DC/DC resonant converter. The half-wave zero current switching (HWZCS) DC/DC Buck converter is selected as a converter topology. A general guideline to select the tank component values, needed for the designing of a HWZCS DC/DC Buck, is obtained. The implementation of the SMC to a HWZCS DC/DC Buck converter is analysed. The converter response is investigated in the steady-state region and in the dynamic region.
Resumo:
Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call ‘‘third component’’) on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.
Resumo:
The aim of the study is to obtain a mathematical description for an alternative variant of controlling a hydraulic circuit with an electrical drive. The electrical and hydraulic systems are described by basic mathematical equations. The flexibilities of the load and boom is modeled with assumed mode method. The model is achieved and proven with simulations. The controller is constructed and proven to decrease oscillations and improve the dynamic response of the system.
Resumo:
Nyky yhteiskunta tulee päivä päivältä riippuvaisemmaksi sähköstä ja sen luotettavasta siirrosta ja jakelusta. Suurhäiriö kantaverkossa on erittäin epätodennäköinen, mutta sen mahdollisuutta ei koskaan voida kokonaan rajata pois. Suurhäiriön seuraukset ovat erittäin vakavat ja yhteiskäytön palautus häiriön jälkeen voi pitkittyä. Diplomityössä käsitellään kantaverkkoyhtiö Fingrid Oyj:n kaasuturpiinivaravoimalaitoksia ja niiden ominaisuuksia kantaverkon suurhäiriössä. Varavoimalaitosten pimeäkäynnistysvalmiudet tarkastettiin ja niissä suoritettiin koeajoja, jotka sisälsivät jatkuvan ja dynaamisen tilan koeajo osuudet. Yhdessä laitosyksikössä tehtiin myös pimeäkäynnistys ja saarekekoeajo. Koeajojen perusteella saatiin arvokasta perustietoa kaasuturpiinilaitosten ominaisuuksista ja mahdollisuuksista toimia pimeäkäynnistystilanteissa. Varavoimalaitosten matemaattista mallintamista yksinkertaisella teollisuuskaasuturpiinilaitoksen mallilla kokeiltiin siinä kuitenkaan onnistumatta. Kokemusten perusteella esitetään keskeisimmät havainnot ja ehdotukset kevyen, moniakselisen kaasuturpiinilaitoksen mallintamiseksi.