991 resultados para dye doped waveguide


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past decade the study of superparamagnetic nanoparticles has been intensively developed for many biomedical applications such as magnetically assisted drug delivery, MRI contrast agents, cells separation and hyperthermia therapy. All of these applications require nanoparticles with high magnetization, equipped also with a suitable surface coating which has to be non-toxic and biocompatible. In this master thesis, the silica coating of commercially available magnetic nanoparticles was investigated. Silica is a versatile material with many intrinsic features, such as hydrophilicity, low toxicity, proper design and derivatization yields particularly stable colloids even in physiological conditions. The coating process was applied to commercial magnetite particles dispersed in an aqueous solution. The formation of silica coated magnetite nanoparticles was performed following two main strategies: the Stöber process, in which the silica coating of the nanoparticle was directly formed by hydrolysis and condensation of suitable precursor in water-alcoholic mixtures; and the reverse microemulsions method in which inverse micelles were used to confine the hydrolysis and condensation reactions that bring to the nanoparticles formation. Between these two methods, the reverse microemulsions one resulted the most versatile and reliable because of the high control level upon monodispersity, silica shell thickness and overall particle size. Moving from low to high concentration, within the microemulsion region a gradual shift from larger particles to smaller one was detected. By increasing the amount of silica precursor the silica shell can also be tuned. Fluorescent dyes have also been incorporated within the silica shell by linking with the silica matrix. The structure of studied nanoparticles was investigated by using transmission electron microscope (TEM) and dynamic light scattering (DLS). These techniques have been used to monitor the syntetic procedures and for the final characterization of silica coated and silica dye doped nanoparticles. Finally, field dependent magnetization measurements showed the magnetic properties of core-shell nanoparticles were preserved. Due to a very well defined structure that combines magnetic and luminescent properties together with the possibility of further functionalization, these multifunctional nanoparticles are potentially useful platforms in biomedical fields such as labeling and imaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this thesis was to design, synthesize and characterize dye-doped silica nanoparticles (DDSNPs) to be used as chemosensors or labels in bioanalytical applications. DDSNPs represent one of the most versatile and useful components in nanomedicine displaying important features such as high colloid stability in water, low toxicity, one-pot inexpensive synthesis and tunable fluorescence emission. Starting from the one-pot and highly reproducible synthesis of “silica-core/PEG shell” DDSNPs based on the use of micelles of Pluronic F127, in which take place both hydrolysis and condensation of the silica precursor and of the dyes functionalized with a triethoxysilane group, we developed DDSNPs suitable for optical and optoacustic imaging, drug loading and chemical sensing obtaining very interesting results for the further development of nanomedicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new solid composite polymer electrolyte was reported by incorporating Azino-bis-(3-ethyl benzo thiazoline-6-sulphonate) ion [ABTS] as dopant in poly(vinylidene flouride) along with redox couple (1-/13-). Under certain conditions, the electrolyte composition forms brush like nano-rods while it is doped with Azino-bis-(3-ethly) benzo thiazoline-6-sulphonate) ion [ABTS], a pi-electron donor. The polymer electrolyte forms nanoscale interpenetrating network with the crystalline order of the polymer electrolyte that seems to be a desirable architecture for the active layer of the photoelectrochemical cell. With this new polymer electrolyte, dye-sensitized solar cell was fabricated using N3 dye absorbed over Ti02- nonoparticles (photoanode) and conducting carbon cement coated on the conducting press (FTO, photocathode). This polymer composite has been successfully used as a promising candidate as solid polymer electrolyte in nanocrystalline dye-sensitized solar cell.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate infinity z(-4). The process was found to be effective up to 30 nm which is well beyond the traditional FRET limit. In this report, we study the transfer of an amount of energy (h) over bar Omega from a dye molecule to doped graphene. We find a crossover of the distance dependence of the rate from z(-4) to exponential as the Fermi level is increasingly shifted into the conduction band, with the crossover occurring at a shift of the Fermi level by an amount (h) over bar Omega/2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 +/- 0.02 dB at 1600 nm, including a propagation loss of 1.6 +/- 0.3 dB. Active characterization shows a relative gain of 2.524 +/- 0.002 dB/cm and 1.359 +/- 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm. (C) 2012 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metal-doped anatase nanosized titania photocatalysts were successfully synthesized using a sal gel process. Different amounts of the dopants (0.2, 0.4, 0.6, 0.8 and 1.0%) of the metals (Ag, Ni, Co and Pd) were utilized. The UV-Vis spectra (solid state diffuse reflectance spectra) of the doped nanoparticles exhibited a red shift in the absorption edge as a result of metal doping. The metal-doped nanoparticles were investigated for their photocatalytic activity under visible-light irradiation using Rhodamine B (Rh B) as a control pollutant. The results obtained indicate that the metal-doped titania had the highest activity at 0.4% metal loading. The kinetic models revealed that the photodegradation of Rh B followed a pseudo first order reaction. From ion chromatography (IC) analysis the degradation by-products Rhodamine B fragments were found to be acetate, chloride, nitrite, carbonate and nitrate ions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min(-1). The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.