994 resultados para ductile fracture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper combines the four-point bending test, SEM and finite element method to study the interface fracture property of PEO coatings on aluminum alloy. The interface failure mode of the coating on the compression side is revealed. The ceramic coating crack firstly along the 45 degrees to the interface, then the micro crack in the coating deduces the interface crack. The plastic deformation observed by SEM shows excellent adhesion property between the coating and substrate. The plastic deformation in the substrate is due to the interfacial crack extension, so the interface crack mode of PEO coatings is ductile crack. The results of FEM show that the compression strength is about 600 MPa. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two types of peeling experiments are performed in the present research. One is for the Al film/Al2O3 substrate system with an adhesive layer between the film and the substrate. The other one is for the Cu film/Al2O3 substrate system without adhesive layer between the film and the substrate, and the Cu films are electroplated onto the Al2O3 substrates. For the case with adhesive layer, two kinds of adhesives are selected, which are all the mixtures of epoxy and polyimide with mass ratios 1:1.5 and 1:1, respectively. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling process. The effects of the adhesive layer on the energy release rate are analyzed. Using the experimental results, several analytical criteria for the steady-state peeling based on the bending model and on the two-dimensional finite element analysis model are critically assessed. Through assessment of analytical models, we find that the cohesive zone criterion based on the beam bend model is suitable for a weak interface strength case and it describes a macroscale fracture process zone case, while the two-dimensional finite element model is effective to both the strong interface and weak interface, and it describes a small-scale fracture process zone case. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element analysis is employed to investigate void growth embedded in elastic-plastic matrix material. Axisymmetric and plane stress conditions are considered. The simulation of void growth in a unit cell model is carried out over a wide range of triaxial tensile stressing or large plastic straining for various strain hardening materials to study the mechanism of void growth in ductile materials. Triaxial tension and large plastic strain encircling around the void are found to be of most importance for driving void growth. The straining mode of incremental loading which favors the necessary strain concentration around void for its growth can be characterized by the vanishing condition of a parameter called "the third invariant of generalized strain rate". Under this condition, it accentuates the internal strain concentration and the strain energy stored/dissipated within the material layer surrounding the void. Experimental results are cited to justify the effect of this loading parameter. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of inertial, thermal and rate - sensitive effects on the void growth at high strain rate in a thermal - viscoplastic solid is investigated by means of a theoretical model presented in the present paper. Numerical analysis of the model suggests that inertial, thermal and rate - sensitive effects are three major factors which greatly influence the behavior of void growth in the high strain rate case. Comparison of the mathematical model proposed in the present work and Johnson's model shows that if the temperature - dependence is considered, material viscosity eta can take the experimentally measured values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Axisymmetric notched bars with notch roots of large and small radii were tested under large strain cyclic loading. The main attention is focused on the fracture behaviour of steels having cycles to failure within the range 1-100. Our study shows that a gradual transition from a static ductile nature to one of fatigue cleavage can be observed and characterized by the Coffin-Manson formula in a generalized form. Both the triaxial tensile stress within the central region of specimens and static damage caused by the first increasing load have effects on the final failure event. A generalized cyclic strain range parameter DELTAepsilon is proposed as a measure of the numerous factors affecting behaviour. Fractographs are presented to illustrate the behaviour reported in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dilatational plastic equations, which can include the effects of ductile damage, are derived based on the equivalency in expressions for dissipated plastic work. Void damage developed internally at the large-strain stage is represented by an effective continuum being strain-softened and plastically dilated. Accumulation of this local damage leads to progressive failure in materials. With regard to this microstructural background, the constitutive parameters included for characterizing material behaviour have the sense of internal variables. They are not able to be determined explicitly by macroscopic testing but rather through computer simulation of experimental curves and data. Application of this constitutive model to mode-I cracking examples demonstrates that a huge strain concentration accompanied by a substantial drop of stress does occur near the crack tip. Eventually, crack propagation is simulated by using finite elements in computations. Two numerical examples show good accordance with experimental data. The whole procedure of study serves as a justification of the constitutive formulation proposed in the text.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strain energy density criterion is used to characterize subcritical crack growth in a thin aluminum alloy sheet undergoing general yielding. A finite element analysis which incorporates both material and geometrical nonlinear behaviors of the cracked sheets is developed to predict fracture loads at varying crack growth increments. The predicted results are in excellent agreement with those measured experimentally, thus confirming the validity of the strain energy density criterion for characterizing ductile crack propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation of the interfacial adhesion of coating system has always been a rough task. In this paper, a special testing method of cross-sectional indentation is applied on a model coating system, i.e. electroplated chromium on a steel substrate which is generally regarded as an example of materials pair with strong adhesion. Based on fractography analysis with SEM and interfacial stress simulation with FEM, it is found that interfacial shear stress may induce coating spalling. More interestingly, spalling location is sensitive to substrate pretreatment process. This shows the feasibility of cross-sectional indentation to distinguish interfacial strength at a high level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of high performance ceramics and ceramic composites often relies on assumptions about their behaviour during loading and at failure. A crucial influence on the mechanical properties of these materials is the degree of sub-critical cracking, which post mortem investigations cannot adequately reveal. Hence a clear picture of the dynamic micromechanisms of cracking is required if applications of fracture and damage mechanics to theoretical models is to be meaningful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an experimental and numerical investigation to characterise the fracture properties of pure bitumen (the binder in asphalt paving materials). The paper is divided into two parts. The first part describes an experimental study of fracture characterisation parameters of pure bitumen as determined by three-point bend tests. The second part deals with modelling of fracture and failure of bitumen by Finite Element analysis. Fracture mechanics parameters, stress intensity factor, KIC, fracture energy, GIC, and J-integral, JIC, are used for evaluation of bitumen's fracture properties. The material constitutive model developed by Ossa et al. [40,41] which was implemented into a FE code by Costanzi [18] is combined with cohesive zone models (CZM) to simulate the fracture behaviour of pure bitumen. Experimental and numerical results are presented in the form of failure mechanism maps where ductile, brittle and brittle-ductile transition regimes of fracture behaviour are classified. The FE predictions of fracture behaviour match well with experimental results. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fracture behavior of thin films of bitumen in double cantilever beam (DCB) specimens was investigated over a wide range of temperature and loading rate conditions using finite-element analysis. The model includes a phenomenological model for the mechanical behavior of bitumen, implemented into a special-purpose finite-element user material subroutine, combined with a cohesive zone model (CZM) for simulating the fracture process. The finite-element model is validated against experimental results from laboratory tests of DCB specimens by comparing measured and predicted load-line deflection histories and fracture energy release rates. Computer simulation results agreed well with experimental data of DCB joints containing bitumen films in terms of peak stress, fracture toughness, and stress-strain history response. The predicted "normalized toughness," G=2h, was found to increase in a power-law manner with effective temperaturecompensated strain rate in the ductile region as previously observed experimentally. In the brittle regime, G=2h is virtually constant. The model successfully captured the ductile and brittle failure behavior of bitumen films in opening mode (tension) for stable crack growth conditions. © 2013 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014 Taylor & Francis. The durability of asphalt pavements is strongly impaired by cracks, caused primarily by traffic loads and environmental effects. In this work, fracture behaviour of idealised asphalt mixes is investigated. Experiments on idealised asphalt mixes under pure-tension mode (mode I cracking) were performed and fracture parameters were evaluated. In these three-point bend fracture tests, the test variables were temperature and load rate. The test data were stored in an asphalt materials database and special-purpose tools were implemented to analyse and handle the laboratory data automatically. Fracture mechanism maps were constructed, showing the conditions associated with ductile, brittle and ductile-brittle transition regimes of behaviour. The mechanism maps show the failure response of the material in terms of the stress intensity factor, strain energy release rate and J-integral as a function of the temperature-compensated crack mouth opening strain rate. Fracture behaviour of asphalt mix specimens was simulated by cohesive zone model in conjunction with a novel material constitutive model for asphalt mixes. The finite element model agrees well with the experimental results and provides insights into fracture response of the notched asphalt mix beam specimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the brittle-ductile transition (BDT) of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The toughness of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends was studied over wide ranges of EPDM content and temperature. In order to study the effect of notch radius (R), the toughness of the samples with different notch radii was determined from Izod impact test. The results showed that both toughness and brittle-ductile transition (BDT) of the blends were a function of R, respectively. At test temperatures, the toughness tended to decrease with increasing 1/R for various PP/EPDM blends. Moreover, the brittle-ductile transition temperature (T-BT) increased with increasing 1/R, whereas the critical interparticle distance (IDc) reduced with increasing 1/R. Finally, it was found that the different curves of IDc versus test temperature (T) for different notches reduced down to a master curve if plotting IDc versus T-BT(m)-T, where T-BT(m) was the T-BT of PP itself for a given notch, indicating that T-BT(m)-T was a more universal parameter that determined the BDT of polymers. This conclusion was well in agreement with the theoretical prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fracture behavior of phenolphthalein polyether-ether ketone (PEK-C) affected by physical aging at 200 degrees C was studied by tensile experiments, scanning electron microscopy, and differential scanning calorimetry observations. The ductile-brittle fracture transition (DBT) caused by physical aging can be considered as a competition between fracture mechanisms of crazing and shear yielding. The aging time required for the DBT is found to be around 400 h, based on the morphological studies and tensile experiments. The shear yielding component of the mechanical deformation could erase the aging effect, thus a deaging phenomenon occurs. We found that the deaging phenomenon has an intrinsic relationship with the extent of aging in the specimen and as a result of the fracture behavior. (C) 1995 John Wiley and Sons, Inc.