918 resultados para dopamine D2 receptors


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is increasing evidence that G protein-coupled receptors form oligomers and that this might be important for their function. We have studied this phenomenon for the D-2 dopamine receptor and have shown-using a variety of biochemical and biophysical techniques-that this receptor forms dimers or higher-order oligomers. Using ligand-binding studies, we have also found evidence that this oligomer formation has functional relevance. Thus, for the receptor expressed in either CHO cells or Sf 9 insect cells, the binding properties of several radioligands (in saturation, competition, and dissociation assays) do not conform to those expected for a monomeric receptor with a single binding site. We propose that the receptors exist in oligomers with homotropic and heterotropic negatively cooperative interactions between ligands

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1 Mechanisms of inverse agonist action at the D-2(short) dopamine receptor have been examined. 2 Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [H-3]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. 3 Competition of inverse agonists versus [H-3] NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K-i values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K-coupled and K-uncoupled were statistically different for the set of compounds tested ( ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. 4 These observations were supported by simulations of these competition experiments according to the extended ternary complex model. 5 Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [S-35]GTPγ S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. 6 These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and purpose: Low efficacy partial agonists at the D-2 dopamine receptor may be useful for treating schizophrenia. In this report we describe a method for assessing the efficacy of these compounds based on stimulation of [S-35]GTP gamma S binding. Experimental approach: Agonist efficacy was assessed from [S-35]GTP gamma S binding to membranes of CHO cells expressing D2 dopamine receptors in buffers with and without Na+. Effects of Na+ on receptor/G protein coupling were assessed using agonist/[H-3] spiperone competition binding assays. Key results: When [S-35]GTP gamma S binding assays were performed in buffers containing Na+, some agonists (aripiprazole, AJ-76, UH-232) exhibited very low efficacy whereas other agonists exhibited measurable efficacy. When Na+ was substituted by N-methyl D-glucamine, the efficacy of all agonists increased (relative to that of dopamine) but particularly for aripiprazole, aplindore, AJ-76, (-)-3-PPP and UH-232. In ligand binding assays, substitution of Na+ by N-methyl D-glucamine increased receptor/G protein coupling for some agonists -. aplindore, dopamine and (-)-3-PPP-but for aripiprazole, AJ-76 and UH-232 there was little effect on receptor/G protein coupling. Conclusions and implications: Substitution of Na+ by NMDG increases sensitivity in [S-35] GTPgS binding assays so that very low efficacy agonists were detected clearly. For some agonists the effect seems to be mediated via enhanced receptor/G protein coupling whereas for others the effect is mediated at another point in the G protein activation cycle. AJ-76, aripiprazole and UH-232 seem particularly sensitive to this change in assay conditions. This work provides a new method to discover these very low efficacy agonists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Behavioral sensitization, defined as a progressive increase in the locomotor stimulant effects elicited by repeated exposure to drugs of abuse, has been used as an animal model for drug craving in humans. The mesoaccumbens dopaminergic system has been proposed to be critically involved in this phenomenon; however, few studies have been designed to systematically investigate the effects of dopaminergic antagonists on development and expression of behavioral sensitization to ethanol in Swiss mice. We first tested the effects of D(1) antagonist SCH-23390 (0-0.03 mg/kg) or D(2) antagonist Sulpiride (0-30 mg/kg) on the locomotor responses to an acute injection of ethanol (2.0 g/kg). Results showed that all tested doses of the antagonists were effective in blocking ethanol`s stimulant effects. In another set of experiments, mice were pretreated intraperitoneally with SCH-23390 (0.01 mg/kg) or Sulpiride (10 mg/kg) 30 min before saline or ethanol injection, for 21 days. Locomotor activity was measured weekly for 20 min. Four days following this pretreatment, all mice were challenged with ethanol. Both antagonists attenuated the development of ethanol sensitization, but only SCH-23390 blocked the expression of ethanol sensitization according to this protocol. When we tested a single dose (30 min before tests) of either antagonist in mice treated chronically with ethanol, both antagonists attenuated ethanol-induced effects. The present findings demonstrate that the concomitant administration of ethanol with D(1) but not D(2) antagonist prevented the expression of ethanol sensitization, suggesting that the neuroadaptations underlying ethanol behavioral sensitization depend preferentially on D(1) receptor actions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fencamfamine (FCF) is a psychostimulant drug classified as an indirect dopamine agonist. In the present study we evaluated the daily variation in plasma FCF concentration and in striatal dopamine receptors. Adult male Wistar rats (250-300 g) maintained on a 12-h light/12-h dark cycle (lights on at 07:00 h) were used. Rats received FCF (10.0 mg/kg, ip) at 09:00, 15:00, 21:00 or 03:00 h and blood samples were collected 30 (N = 6) or 60 (N = 6) min after the injections. Plasma FCF was measured by gas chromatography using an electron capture detector. Two-way ANOVA showed significant differences in FCF concentration when blood samples were collected 30 min after the injection, and the highest value was obtained following injection 21:00 h. Moreover, at 15:00, 21:00 and 03:00h, plasma FCF levels were significantly lower 60 min after injection when compared to the 30-min interval. Two other groups of rats (N = 6) were decapitated at 09:00 or 21:00 h and the striata were dissected for the binding assays. The Bmax for [H-3]-spiroperidol binding to striatal membranes was higher at 21:00 h, without changes in affinity constant (Kd). In conclusion, plasma FCF levels and dopamine receptors undergo daily variation,a phenomenon that should be considered to explain the circadian time-dependent effects of FCF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Während des frühen Lebens stellen epileptische Anfälle schwere neurologische Zustände dar, weil sie ein großer Risikofaktor für die Manifestation der Epilepsie sind und eine hohe pharmakologische Resistenz zeigen. In meiner Doktorarbeit konzentrierte ich mich auf die Frage, wie verschiedene Neurotransmitter-Systeme und klinisch verwendete Medikamente epileptiforme Entladungen im perinatalen Hippocampus beeinflussen. rnIm ersten Teil meines Projektes untersuchte ich die Wirkung von GABA-Antagonisten und Modulatoren, die zwischen phasischen und tonischen GABAergen Strömen differenzieren, auf Feldpotentialaktivität in Hippocampusschnitten. Diese Experimente zeigten, dass im unreifen Hippocampus synaptische GABAerge Aktivität benötigt wird, um die Erregbarkeit zu begrenzen, während tonische GABAerge Ströme die Erregbarkeit verstärken können. Dies könnte darauf hinweisen, dass Antiepileptika mit einer höheren Spezifität für synaptische GABAA-Rezeptoren wirksamer zur Behandlung von epileptischen Anfällen bei Neugeborenen sein können. rnUm den Einfluss von Dopamin auf die Erregbarkeit des unreifen Hippocampus herauszufinden, untersuchte ich im zweiten Teil meiner Arbeit die Wirkung von verschiedenen Dopaminkonzentrationen und spezifische Agonisten und Antagonisten der Dopamin-Rezeptor-Subtypen auf epileptiforme Entladungen. Diese Experimente zeigten, dass niedrige Dopamin Konzentrationen eine antikonvulsive Wirkung haben, welche vom D2-ähnliche-Rezeptor-Agonisten Quinpirol nachgeahmt werden kann, während höhere Dopamin-Konzentrationen eine prokonvulsive Wirkung über Aktivierung von D1-ähnlichen Rezeptoren hervorrufen. Obwohl unsere Untersuchungen eine mögliche Verwendung von D2-ähnlichen Rezeptor-Agonisten zur Kontrolle epileptischer Anfälle in Neugeborenen nahelegen, müssen mögliche negative Auswirkungen von DAergen Agonisten und Antagonisten auf die neuronale Entwicklung berücksichtigt werden.rnIm dritten Teil meiner Arbeit untersuchte ich welche Konzentrationen von Methylxanthinen epileptische Anfälle in Hippocampuspreparationen auslösen die synaptische Übertragungen verändern können. Diese Experimente zeigten, dass sowohl Theophyllin als auch Koffein in höheren Konzentrationen die basale synaptische Übertragungen in der CA1-Region des Hippocampus modifizieren und epileptiforme Entladungen provozieren. Die Auswirkungen auf die postsynaptischen Antworten und spontanen epileptiformen Entladungen durch Koffein waren weniger ausgeprägt, was darauf hindeutet, dass diese Substanz potentiell vorteilhafter für therapeutische Anwendungen bei Frühgeborenen sein kann. rnZusammenfassend bereichern die Ergebnisse meiner Studie erheblich unser Wissen über die zugrunde liegenden Mechanismen epileptiformer Aktivität im unreifen Hippocampus und den therapeutischen Einsatz von Methylxanthinen und Pharmaka, die auf das GABAerge und DArge System einwirken.rnrn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Levodopa, the precursor of dopamine, is currently the drug of choice in the treatment of Parkinson's disease. Recently, two direct dopamine agonists, bromocriptine and pergolide, have been tested for the treatment of Parkinson's disease because of reduced side effects compared to levodopa. Few studies have evaluated the effects of long-term treatment of dopamine agonists on dopamine receptor regulation in the central nervous system. Thus, the purpose of this study was to determine whether chronic dopamine agonist treatment produces a down-regulation of striatal dopamine receptor function and to compare the results of the two classes of dopaminergic drugs.^ Levodopa with carbidopa, a peripheral decarboxylase inhibitor, was administered orally to rats whereas bromocriptine and pergolide were injected intraperitoneally once daily. Several neurochemical parameters were examined from 1 to 28 days.^ Levodopa minimally decreased striatal D-1 receptor activity but increased the number of striatal D-2 binding sites. Levodopa increased the V(,max) of tyrosine hydroxylase (TH) in all brain regions tested. Protein blot analysis of striatal TH indicated a significant increase in the amount of TH present. Dopamine-beta-hydroxylase (DBH) activity was markedly decreased in all brain regions studied and mixing experiments of control and drug-treated cortices did not show the presence of an increased level of endogenous inhibitors.^ Bromocriptine treatment decreased the number of D-2 binding sites. Striatal TH activity was decreased and protein blot analysis indicated no change in TH quantity. The specificity of bromocriptine for striatal TH suggested that bromocriptine preferentially interacts with dopamine autoreceptors.^ Combination levodopa-bromocriptine was administered for 12 days. There was a decrease in both D-1 receptor activity and D-2 binding sites, and a decrease in brain HVA levels suggesting a postsynaptic receptor action. Pergolide produced identical results to the combination levodopa-bromocriptine studies.^ In conclusion, combination levodopa-bromocriptine and pergolide treatments exhibited the expected down-regulation of dopamine receptor activity. In contrast, levodopa appeared to up-regulate dopamine receptor activity. Thus, these data may help to explain, on a biochemical basis, the decrease in the levodopa-induced side effects noted with combination levodopa-bromocriptine or pergolide therapies in the treatment of Parkinson's disease. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous work has shown that glucocorticoid hormones facilitate the behavioral and dopaminergic effects of morphine. In this study we examined the possible role in these effects of the two central corticosteroid receptor types: mineralocorticoid receptor (MR), and glucocorticoid receptor (GR). To accomplish this, specific antagonists of these receptors were infused intracerebroventricularly and 2 hr later we measured: (i) locomotor activity induced by a systemic injection of morphine (2 mg/kg); (ii) locomotor activity induced by an infusion of morphine (1 μg per side) into the ventral tegmental area, which is a dopamine-dependent behavioral response to morphine; (iii) morphine-induced dopamine release in the nucleus accumbens, a dopaminergic projection site mediating the locomotor and reinforcing effects of drugs of abuse. Blockade of MRs by spironolactone had no significant effects on locomotion induced by systemic morphine. In contrast, blockade of GRs by either RU38486 or RU39305, which is devoid of antiprogesterone effects, reduced the locomotor response to morphine, and this effect was dose dependent. GR antagonists also reduced the locomotor response to intraventral tegmental area morphine as well as the basal and morphine-induced increase in accumbens dopamine, as measured by microdialysis in freely moving rats. In contrast, spironolactone did not modify dopamine release. In conclusion, glucocorticoids, via GRs, facilitate the dopamine-dependent behavioral effects of morphine, probably by facilitating dopamine release. The possibility of decreasing the behavioral and dopaminergic effects of opioids by an acute administration of GR antagonists may open new therapeutic strategies for treatment of drug addiction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many chemoattractants cause chemotaxis of leukocytes by stimulating a structurally distinct class of G protein-coupled receptors. To identify receptor functions required for chemotaxis, we studied chemotaxis in HEK293 cells transfected with receptors for nonchemokine ligands or for interleukin 8 (IL-8), a classical chemokine. In gradients of the appropriate agonist, three nonchemokine Gi-coupled receptors (the D2 dopamine receptor and opioid μ and δ receptors) mediated chemotaxis; the β2-adrenoreceptor and the M3-muscarinic receptor, which couple respectively to Gs and Gq, did not mediate chemotaxis. A mutation deleting 31 C-terminal amino acids from the IL-8 receptor type B quantitatively impaired chemotaxis and agonist-induced receptor internalization, but not inhibition of adenylyl cyclase or stimulation of mitogen-activated protein kinase. To probe the possible relation between receptor internalization and chemotaxis, we used two agonists of the μ-opioid receptor. Morphine and etorphine elicited quantitatively similar chemotaxis, but only etorphine induced receptor internalization. Overexpression of two βγ sequestering proteins (βARK-ct and αt) prevented IL-8 receptor type B-mediated chemotaxis but did not affect inhibition of adenylyl cyclase by IL-8. We conclude that: (i) Nonchemokine Gi-coupled receptors can mediate chemotaxis. (ii) Gi activation is necessary but probably not sufficient for chemotaxis. (iii) Chemotaxis does not require receptor internalization. (iv) Chemotaxis requires the release of free βγ subunits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the circadian function of Drosophila dopamine receptors by using a behaviorally active decapitated preparation that allows for direct application of drugs to the nerve cord. Quinpirole, a D2-like dopamine receptor agonist, induces reflexive locomotion in decapitated flies. We show that the amount of locomotion induced changes as a function of the time of day, with the highest responsiveness to quinpirole during the subjective night. Furthermore, dopamine receptor responsiveness is under circadian control and depends on the normal function of the period gene. The head pacemaker is at least partly dispensable for the circadian modulation of quinpirole-induced locomotion, because changes in agonist responsiveness persist in decapitated flies that are aged for 12 h. This finding suggests a role for the period-dependent molecular oscillators in the body in the modulation of amine receptor responsiveness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Loss of neurotransmitter receptors, especially glutamate and dopamine receptors, is one of the pathologic hallmarks of brains of patients with Huntington disease (HD). Transgenic mice that express exon 1 of an abnormal human HD gene (line R6/2) develop neurologic symptoms at 9–11 weeks of age through an unknown mechanism. Analysis of glutamate receptors (GluRs) in symptomatic 12-week-old R6/2 mice revealed decreases compared with age-matched littermate controls in the type 1 metabotropic GluR (mGluR1), mGluR2, mGluR3, but not the mGluR5 subtype of G protein-linked mGluR, as determined by [3H]glutamate receptor binding, protein immunoblotting, and in situ hybridization. Ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors were also decreased, while N-methyl-d-aspartic acid receptors were not different compared with controls. Other neurotransmitter receptors known to be affected in HD were also decreased in R6/2 mice, including dopamine and muscarinic cholinergic, but not γ-aminobutyric acid receptors. D1-like and D2-like dopamine receptor binding was drastically reduced to one-third of control in the brains of 8- and 12-week-old R6/2 mice. In situ hybridization indicated that mGluR and D1 dopamine receptor mRNA were altered as early as 4 weeks of age, long prior to the onset of clinical symptoms. Thus, altered expression of neurotransmitter receptors precedes clinical symptoms in R6/2 mice and may contribute to subsequent pathology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The A2AR is largely coexpressed with D2Rs and enkephalin mRNA in the striatum where it modulates dopaminergic activity. Activation of the A2AR antagonizes D2R-mediated behavioral and neurochemical effects in the basal ganglia through a mechanism that may involve direct A2AR–D2R interaction. However, whether the D2R is required for the A2AR to exert its neural function is an open question. In this study, we examined the role of D2Rs in A2AR-induced behavioral and cellular responses, by using genetic knockout (KO) models (mice deficient in A2ARs or D2Rs or both). Behavioral analysis shows that the A2AR agonist 2–4-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine reduced spontaneous as well as amphetamine-induced locomotion in both D2 KO and wild-type mice. Conversely, the nonselective adenosine antagonist caffeine and the A2AR antagonist 8-(3-chlorostyryl)caffeine produced motor stimulation in mice lacking the D2R, although the stimulation was significantly attentuated. At the cellular level, A2AR inactivation counteracted the increase in enkephalin expression in striatopallidal neurons caused by D2R deficiency. Consistent with the D2 KO phenotype, A2AR inactivation partially reversed both acute D2R antagonist (haloperidol)-induced catalepsy and chronic haloperidol-induced enkephalin mRNA expression. Together, these results demonstrate that A2ARs elicit behavioral and cellular responses despite either the genetic deficiency or pharmacological blockade of D2Rs. Thus, A2AR-mediated neural functions are partially independent of D2Rs. Moreover, endogenous adenosine acting at striatal A2ARs may be most accurately viewed as a facilitative modulator of striatal neuronal activity rather than simply as an inhibitory modulator of D2R neurotransmission.