924 resultados para diversified grazing ecosystems
Resumo:
Polioencephalomalacia was diagnosed histologically in cattle from two herds on the Darling Downs, Queensland, during July-August 2007. In the first incident, 8 of 20 18-month-old Aberdeen Angus steers died while grazing pastures comprising 60% Sisymbrium irio (London rocket) and 40% Capsella bursapastoris (shepherd's purse). In the second incident, 2 of 150 mixed-breed adult cattle died, and another was successfully treated with thiamine, while grazing a pasture comprising almost 100% Raphanus raphanistrum (wild radish). Affected cattle were either found dead or comatose or were seen apparently blind and head-pressing in some cases. For both incidents, plant and water assays were used to calculate the total dietary sulfur content in dry matter as 0.62% and 1.01% respectively, both exceeding the recommended 0.5% for cattle eating more than 40% forage. Blood and tissue assays for lead were negative in both cases. No access to thiaminase, concentrated sodium ion or extrinsic hydrogen sulfide sources were identified in either incident. Below-median late summer and autumn rainfall followed by above-median unseasonal winter rainfall promoted weed growth at the expense of wholesome pasture species before these incidents.
Resumo:
Rainfall variability is a challenge to sustainable and pro. table cattle production in northern Australia. Strategies recommended to manage for rainfall variability, like light or variable stocking, are not widely adopted. This is due partly to the perception that sustainability and profitability are incompatible. A large, long-term grazing trial was initiated in 1997 in north Queensland, Australia, to test the effect of different grazing strategies on cattle production. These strategies are: (i) constant light stocking (LSR) at long-term carrying capacity (LTCC); (ii) constant heavy stocking (HSR) at twice LTCC; (iii) rotational wet-season spelling (R/Spell) at 1.5 LTCC; (iv) variable stocking (VAR), with stocking rates adjusted in May based on available pasture; and (v) a Southern Oscillation Index (SOI) variable strategy, with stocking rates adjusted in November, based on available pasture and SOI seasonal forecasts. Animal performance varied markedly over the 10 years for which data is presented, due to pronounced differences in rainfall and pasture availability. Nonetheless, lighter stocking at or about LTCC consistently gave the best individual liveweight gain (LWG), condition score and skeletal growth; mean LWG per annum was thus highest in the LSR (113 kg), intermediate in the R/Spell (104 kg) and lowest in the HSR(86 kg). MeanLWGwas 106 kg in the VAR and 103 kg in the SOI but, in all years, the relative performance of these strategies was dependent upon the stocking rate applied. After 2 years on the trial, steers from lightly stocked strategies were 60-100 kg heavier and received appreciable carcass price premiums at the meatworks compared to those under heavy stocking. In contrast, LWG per unit area was greatest at stocking rates of about twice LTCC; mean LWG/ha was thus greatest in the HSR (21 kg/ha), but this strategy required drought feeding in four of the 10 years and was unsustainable. Although LWG/ha was lower in the LSR (mean 14 kg/ha), or in strategies that reduced stocking rates in dry years like the VAR(mean 18 kg/ha) and SOI (mean 17 kg/ha), these strategies did not require drought feeding and appeared sustainable. The R/Spell strategy (mean 16 kg/ha) was compromised by an ill-timed fire, but also performed satisfactorily. The present results provide important evidence challenging the assumption that sustainable management in a variable environment is unprofitable. Further research is required to fully quantify the long-term effects of these strategies on land condition and profitability and to extrapolate the results to breeder performance at the property level.
Resumo:
Grass (monocots) and non-grass (dicots) proportions in ruminant diets are important nutritionally because the non-grasses are usually higher in nutritive value, particularly protein, than the grasses, especially in tropical pastures. For ruminants grazing tropical pastures where the grasses are C-4 species and most non-grasses are C-3 species, the ratio of C-13/C-12 in diet and faeces, measured as delta C-13 parts per thousand, is proportional to dietary non-grass%. This paper describes the development of a faecal near infrared (NIR) spectroscopy calibration equation for predicting faecal delta C-13 from which dietary grass and non-grass proportions can be calculated. Calibration development used cattle faeces derived from diets containing only C-3 non-grass and C-4 grass components, and a series of expansion and validation steps was employed to develop robustness and predictive reliability. The final calibration equation contained 1637 samples and faecal delta C-13 range (parts per thousand) of [12.27]-[27.65]. Calibration statistics were: standard error of calibration (SEC) of 0.78, standard error of cross-validation (SECV) of 0.80, standard deviation (SD) of reference values of 3.11 and R-2 of 0.94. Validation statistics for the final calibration equation applied to 60 samples were: standard error of prediction (SEP) of 0.87, bias of -0.15, R-2 of 0.92 and RPD of 3.16. The calibration equation was also tested on faeces from diets containing C-4 non-grass species or temperate C-3 grass species. Faecal delta C-13 predictions indicated that the spectral basis of the calibration was not related to C-13/C-12 ratios per se but to consistent differences between grasses and non-grasses in chemical composition and that the differences were modified by photosynthetic pathway. Thus, although the calibration equation could not be used to make valid faecal delta C-13 predictions when the diet contained either C-3 grass or C-4 non-grass, it could be used to make useful estimates of dietary non-grass proportions. It could also be ut :sed to make useful estimates of non-grass in mixed C-3 grass/non-grass diets by applying a modified formula to calculate non-grass from predicted faecal delta C-13. The development of a robust faecal-NIR calibration equation for estimating non-grass proportions in the diets of grazing cattle demonstrated a novel and useful application of NIR spectroscopy in agriculture.
Resumo:
This paper describes a study to identify those factors which control the persistence of the Subtropical legume Stylosanthes hippocampoides, formerly S. guianensis cv. Oxley (fine stem stylo). The dynamics of S. hippocampoides populations was recorded in permanent quadrats at 2 stocking rates in a grazing study conducted between 1987 and 1992 in south-eastern Queensland. Density of mature plants fluctuated between 10 and 60 plants/m(2) during the 5 years with the major contributing factors being variations in seedling recruitment and survival, which, in turn, reflected the size of the soil seed bank and seasonal rainfall. Plant density was consistently higher at the lower stocking rate of 1 beast/1.5 ha compared with 1 beast/1 ha; however, the effect of stocking rate was minor compared with fluctuation due to seasonal variation in rainfall. The maximum life span of the original plants exceeded 5 years, while the survival of seedling cohorts was strongly impacted by seasonal rainfall. Total exclosure from grazing during summer increased the size of the soil seed bank although a precise time period during summer was not identified, while grazing at the lower stocking pressure produced the same outcome. It was concluded that the large seasonal variation that occurs in S. hippocampoides density is driven by large seasonal variation in seedling recruitment, which, in turn, is influenced by the size of the soil seed bank.
Resumo:
For pasture growth in the semi-arid tropics of north-east Australia, where up to 80% of annual rainfall occurs between December and March, the timing and distribution of rainfall events is often more important than the total amount. In particular, the timing of the 'green break of the season' (GBOS) at the end of the dry season, when new pasture growth becomes available as forage and a live-weight gain is measured in cattle, affects several important management decisions that prevent overgrazing and pasture degradation. Currently, beef producers in the region use a GBOS rule based on rainfall (e. g. 40mm of rain over three days by 1 December) to define the event and make their management decisions. A survey of 16 beef producers in north-east Queensland shows three quarters of respondents use a rainfall amount that occurs in only half or less than half of all years at their location. In addition, only half the producers expect the GBOS to occur within two weeks of the median date calculated by the CSIRO plant growth days model GRIM. This result suggests that in the producer rules, either the rainfall quantity or the period of time over which the rain is expected, is unrealistic. Despite only 37% of beef producers indicating that they use a southern oscillation index (SOI) forecast in their decisions, cross validated LEPS (linear error in probability space) analyses showed both the average 3 month July-September SOI and the 2 month August-September SOI have significant forecast skill in predicting the probability of both the amount of wet season rainfall and the timing of the GBOS. The communication and implementation of a rigorous and realistic definition of the GBOS, and the likely impacts of anthropogenic climate change on the region are discussed in the context of the sustainable management of northern Australian rangelands.
Resumo:
The emerging carbon economy will have a major impact on grazing businesses because of significant livestock methane and land-use change emissions. Livestock methane emissions alone account for similar to 11% of Australia's reported greenhouse gas emissions. Grazing businesses need to develop an understanding of their greenhouse gas impact and be able to assess the impact of alternative management options. This paper attempts to generate a greenhouse gas budget for two scenarios using a spread sheet model. The first scenario was based on one land-type '20-year-old brigalow regrowth' in the brigalow bioregion of southern-central Queensland. The 50 year analysis demonstrated the substantially different greenhouse gas outcomes and livestock carrying capacity for three alternative regrowth management options: retain regrowth (sequester 71.5 t carbon dioxide equivalents per hectare, CO2-e/ha), clear all regrowth (emit 42.8 t CO2-e/ha) and clear regrowth strips (emit 5.8 t CO2-e/ha). The second scenario was based on a 'remnant eucalypt savanna-woodland' land type in the Einasleigh Uplands bioregion of north Queensland. The four alternative vegetation management options were: retain current woodland structure (emit 7.4 t CO2-e/ha), allow woodland to thicken increasing tree basal area (sequester 20.7 t CO2-e/ha), thin trees less than 10 cm diameter (emit 8.9 t CO2-e/ha), and thin trees <20 cm diameter (emit 12.4 t CO2-e/ha). Significant assumptions were required to complete the budgets due to gaps in current knowledge on the response of woody vegetation, soil carbon and non-CO2 soil emissions to management options and land-type at the property scale. The analyses indicate that there is scope for grazing businesses to choose alternative management options to influence their greenhouse gas budget. However, a key assumption is that accumulation of carbon or avoidance of emissions somewhere on a grazing business (e.g. in woody vegetation or soil) will be recognised as an offset for emissions elsewhere in the business (e.g. livestock methane). This issue will be a challenge for livestock industries and policy makers to work through in the coming years.
Resumo:
The complexity, variability and vastness of the northern Australian rangelands make it difficult to assess the risks associated with climate change. In this paper we present a methodology to help industry and primary producers assess risks associated with climate change and to assess the effectiveness of adaptation options in managing those risks. Our assessment involved three steps. Initially, the impacts and adaptation responses were documented in matrices by ‘experts’ (rangeland and climate scientists). Then, a modified risk management framework was used to develop risk management matrices that identified important impacts, areas of greatest vulnerability (combination of potential impact and adaptive capacity) and priority areas for action at the industry level. The process was easy to implement and useful for arranging and analysing large amounts of information (both complex and interacting). Lastly, regional extension officers (after minimal ‘climate literacy’ training) could build on existing knowledge provided here and implement the risk management process in workshops with rangeland land managers. Their participation is likely to identify relevant and robust adaptive responses that are most likely to be included in regional and property management decisions. The process developed here for the grazing industry could be modified and used in other industries and sectors. By 2030, some areas of northern Australia will experience more droughts and lower summer rainfall. This poses a serious threat to the rangelands. Although the impacts and adaptive responses will vary between ecological and geographic systems, climate change is expected to have noticeable detrimental effects: reduced pasture growth and surface water availability; increased competition from woody vegetation; decreased production per head (beef and wool) and gross margin; and adverse impacts on biodiversity. Further research and development is needed to identify the most vulnerable regions, and to inform policy in time to facilitate transitional change and enable land managers to implement those changes.
Resumo:
This review of grader grass (Themeda quadrivalvis) attempts to collate current knowledge and identify knowledge gaps that may require further research. Grader grass is a tropical annual grass native to India that is now spread throughout many of the tropical regions of the world. In Australia, it has spread rapidly since its introduction in the 1930s and is now naturalised in the tropical areas of Queensland, the Northern Territory and Western Australia and extends south along the east coast to northern New South Wales. It is a vigorous grass with limited palatability, that is capable of invading native and improved pastures, cropping land and protected areas such as state and national parks. Grader grass can form dense monocultures that reduce biodiversity, decrease animal productivity and increase the fire hazard in the seasonally dry tropics. Control options are based on herbicides, grazing management and slashing, while overgrazing appears to favour grader grass. The effect of fire on grader grass is inconclusive and needs to be defined. Little is known about the biology and impacts of grader grass in agricultural and protected ecosystems in Australia. In particular, information is needed on soil seed bank longevity, seed production, germination and growth, which would allow the development of management strategies to control this weedy grass.
Resumo:
The variation in liveweight gain in grazing beef cattle as influenced by pasture type, season and year effects has important economic implications for mixed crop-livestock systems and the ability to better predict such variation would benefit beef producers by providing a guide for decision making. To identify key determinants of liveweight change of Brahman-cross steers grazing subtropical pastures, measurements of pasture quality and quantity, and diet quality in parallel with liveweight were made over two consecutive grazing seasons (48 and 46 weeks, respectively), on mixed Clitoria ternatea/grass, Stylosanthes seabrana/grass and grass swards (grass being a mixture of Bothriochloa insculpta cv. Bisset, Dichanthium sericeum and Panicum maximum var. trichoglume cv. Petrie). Steers grazing the legume-based pastures had the highest growth rate and gained between 64 and 142 kg more than those grazing the grass pastures in under 12 months. Using an exponential model, green leaf mass, green leaf %, adjusted green leaf % (adjusted for inedible woody legume stems), faecal near infrared reflectance spectroscopy predictions of diet crude protein and diet dry matter digestibility, accounted for 77, 74, 80, 63 and 60%, respectively, of the variation in daily weight gain when data were pooled across pasture types and grazing seasons. The standard error of the regressions indicated that 95% prediction intervals were large (+/- 0.42-0.64 kg/head.day) suggesting that derived regression relationships have limited practical application for accurately estimating growth rate. In this study, animal factors, especially compensatory growth effects, appeared to have a major influence on growth rate in relation to pasture and diet attributes. It was concluded that predictions of growth rate based only on pasture or diet attributes are unlikely to be accurate or reliable. Nevertheless, key pasture attributes such as green leaf mass and green leaf% provide a robust indication of what proportion of the potential growth rate of the grazing animals can be achieved.
Resumo:
Steer liveweight gains were measured in an extensive grazing study conducted in a Heteropogon contortus (black speargrass) pasture in central Queensland between 1988 and 2001. Treatments included a range of stocking rates in native pastures, legume-oversown native pasture and animal diet supplement/spring-burning pastures. Seasonal rainfall throughout this study was below the long-term mean. Mean annual pasture utilisation ranged from 13 to 61%. Annual liveweight gains per head in native pasture were highly variable among years and ranged from a low of 43 kg/steer at 2 ha/steer to a high of 182 kg/steer at 8 ha/steer. Annual liveweight gains were consistently highest at light stocking and decreased with increasing stocking rate. Annual liveweight gain per hectare increased linearly with stocking rate. These stocking rate trends were also evident in legume-oversown pastures although both the intercept and slope of the regressions for legume-oversown pastures were higher than that for native pasture. The highest annual liveweight gain for legume-oversown pasture was 221 kg/steer at 4 ha/steer. After 13 years, annual liveweight gain per unit area occurred at the heaviest stocking rate despite deleterious changes in the pasture. Across all years, the annual liveweight advantage for legume-oversown pastures was 37 kg/steer. Compared with native pasture, changes in annual liveweight gain with burning were variable. It was concluded that cattle productivity is sustainable when stocking rates are maintained at 4 ha/steer or lighter (equivalent to a utilisation rate around 30%). Although steer liveweight gain occurred at all stocking rates and economic returns were highest at heaviest stocking rates, stocking rates heavier than 4 ha/steer are unsustainable because of their long-term impact on pasture productivity.
Resumo:
The selection of different patch types for grazing by cattle in tropical savannas is well documented. Advances in high resolution satellite imagery and computing power now allow us to identify patch types over an entire paddock, combined with GPS collars as a non instrusive method of capturing positional data, an accurate and comprehensive picture of landscape use by cattle can be quantified.
Resumo:
Rainfall variability is a major challenge to sustainable management in semi-arid rangelands. We present empirical evidence from a large, long-term grazing trial in northern Australia on the relative performance of constant heavy stocking, moderate stocking at long-term carrying capacity and variable stocking in coping with climate variability over a range of rainfall years. Moderate stocking gave good economic returns, maintained pasture condition and minimised soil loss and runoff. Heavy stocking was neither sustainable nor profitable in the long term. Variable stocking generally performed well but suffered economic loss and some decline in pasture condition in the transition from good to poor years. Importantly, our results show that sustainable and profitable management are compatible in semi-arid rangelands.
Resumo:
The Burdekin Rangelands is a diverse area of semi-arid eucalypt and acacia savannah covering six million hectares in north eastern Australia. The major land use is cattle grazing on 220 commercial cattle properties (average size 26,000 ha) each carrying on average 2600 adult equivalents. Production was the focus of the beef industry and support agencies prior to the mid 1980's. Widespread land degradation during the 1980's led to a grassroots realisation that environmental impacts, including water quality had to be addressed for the beef industry to attain sustainability. The formation of a series of producer based landcare gropus and the support of several Queensland and Australian government research and extension agencies led to a greater awareness and adoption of sound grazing land management practices (Shepherd 2005).
Resumo:
The diet selected in autumn by steers fistulated at the oesophageous was studied in a subset of treatments in an extensive grazing study conducted in a Heteropogon contortus pasture in central Queensland between 1988 and 2001. These treatments were a factorial array of three stocking rates (4, 3 and 2 ha/steer) and three pasture types (native pasture, legume-oversown native pasture and animal diet supplement/spring-burning native pasture). Seasonal rainfall throughout this study was below the long-term mean and mean annual pasture utilisation ranged from 30 to 61%. Steers consistently selected H. contortus with levels decreasing from 47 to 18% of the diet as stocking rate increased from 4 ha/steer to 2 ha/steer. Stylosanthes scabra cv. Seca was always selected in legume-oversown pastures with diet composition varying from 35 to 66% despite its plant density increasing from 7 to 65 plants/m(2) and pasture composition from 20 to 50%. Steers also selected a diet containing Chrysopogon fallax, forbs and sedges in higher proportions than they were present in the pasture. Greater availability of the intermediate grasses Chloris divaricata and Eragrostis spp. was associated with increased stocking rates. Bothriochloa bladhii was seldom selected in the diet, especially when other palatable species were present in the pasture, despite B. bladhii often being the major contributor to total pasture yield. It was concluded that a stocking rate of 4 ha/steer will maintain the availability of H. contortus in the pasture.
Resumo:
The dynamics of Heteropogon contortus and Stylosanthes scabra cv. Seca populations were studied in a subset of treatments in an extensive grazing study conducted in central Queensland between 1988 and 2001. These treatments were 4 stocking rates in native pasture and 2 of these stocking rates in legume oversown and supplement/spring burning treatments. For the 1999-2000 summer, population data for H. contortus in 5 of these native pasture and supplement/burning treatments were compared with those for an additional burnt treatment. Seasonal rainfall throughout this study was below the long-term mean and mean annual pasture utilisation ranged from 24 to 61%. Increasing stocking rate from 5 to 2 ha/steer in native pasture reduced H. contortus plant density. Increasing stocking rate reduced seedling recruitment as a result of its effect on soil seedbanks. Seedling recruitment was the major determinant of change in plant density, although some individual H. contortus plants did survive throughout the study. Burning in spring 1999, particularly at light stocking rate, promoted seedling recruitment above that in both unburnt native and legume oversown pasture and resulted in increased H. contortus plant density. In the legume oversown treatments, S. scabra cv. Seca density increased rapidly from 15 plants/m2 in 1988 to 140 plants/m2 in 2001 following a lag phase between 1988 and 1993. This increased S. scabra density was associated with an eventual decline in H. contortus plant density through reduced seedling recruitment. It was concluded that H. contortus population density is sustainable at stocking rates of 4 and 5 ha/steer (30% pasture utilisation) and that spring burning at light stocking rate can promote H. contortus populations. Increasing densities of S. scabra need to be managed to prevent its dominance.