951 resultados para disposition
Resumo:
Mode of access: Internet.
Resumo:
CCBE S. XVI
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bert M. Fernald, chairman.
Resumo:
Mode of access: Internet.
Resumo:
Superseded by Oregon. Legislative Assembly. Legislative Calendar, After 1957
Resumo:
Paged continuously.
Resumo:
Dedication signed: E. Deslandes.
Resumo:
The aim of this study was to define the determinants of the linear hepatic disposition kinetics of propranolol optical isomers using a perfused rat liver. Monensin was used to abolish the lysosomal proton gradient to allow an estimation of propranolol ion trapping by hepatic acidic vesicles. In vitro studies were used for independent estimates of microsomal binding and intrinsic clearance. Hepatic extraction and mean transit time were determined from outflow-concentration profiles using a nonparametric method. Kinetic parameters were derived from a physiologically based pharmacokinetic model. Modeling showed an approximate 34-fold decrease in ion trapping following monensin treatment. The observed model-derived ion trapping was similar to estimated theoretical values. No differences in ion-trapping values was found between R(+)- and S(-)- propranolol. Hepatic propranolol extraction was sensitive to changes in liver perfusate flow, permeability-surface area product, and intrinsic clearance. Ion trapping, microsomal and nonspecific binding, and distribution of unbound propranolol accounted for 47.4, 47.1, and 5.5% of the sequestration of propranolol in the liver, respectively. It is concluded that the physiologically more active S(-)- propranolol differs from the R(+)- isomer in higher permeability-surface area product, intrinsic clearance, and intracellular binding site values.
Resumo:
Echinacea is a widely used herbal remedy for the treatment of colds and other infections. However, almost nothing is known about the disposition and pharmacokinetics of any of its components, particularly the alkamides and caffeic acid conjugates which are thought to be the active phytochemicals. In this investigation, we have examined serial plasma samples from 9 healthy volunteers who ingested echinacea tablets manufactured from ethanolic liquid extracts of Echinacea angustifolia and Echinacea purpurea immediately after a standard high fat breakfast. Caffeic acid conjugates could not be identified in any plasma sample at any time after tablet ingestion. Alkamides were rapidly absorbed and were measurable in plasma 20 min after tablet ingestion and remained detectable for up to 12 h. Concentration-time curves for 2,4-diene and 2-ene alkamides were determined. The maximal concentrations for the sum of alkamides in human plasma were reached within 2.3 h post ingestion and averaged 336 +/- 131 ng eq/mL plasma. No obvious differences were observed in the pharmacokinetics of individual or total alkamides in 2 additional fasted subjects who took the same dose of the echinacea preparation. This single dose study provides evidence that alkamides are orally available and that their pharmacokinetics are in agreement with the one dose three times daily regimen already recommended for echinacea.
Resumo:
Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.