967 resultados para displacement spectra
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.
Resumo:
Dynamic mixtures of Rh-dye complexes can be used to determine the history of chemical events such as the addition of ATP and ADP by UV-vis spectroscopy.
Resumo:
Purpose: To examine the relationship of functional measurements with structural measures. Methods: 146 eyes of 83 test subjects underwent Heidelberg Retinal Tomography (HRTIII) (disc area<2.43, mphsd<40), and perimetry testing with Octopus (SAP; Dynamic), Pulsar (PP; TOP) and Moorfields MDT (ESTA). Glaucoma was defined as progressive structural or functional loss (20 eyes). Perimetry test points were grouped into 6 sectors based on the estimated optic nerve head angle into which the associated nerve fiber bundle enters (Garway-Heath map). Perimetry summary measures (PSM) (MD SAP/ MD PP/ PTD MDT) were calculated from the average total deviation of each measured threshold from the normal for each sector. We calculated the 95% significance level of the sectorial PSM from the respective normative data. We calculated the percentage agreement with group1 (G1), healthy on HRT and within normal perimetric limits, and group 2 (G2), abnormal on HRT and outside normal perimetric limits. We also examined the relationship of PSM and rim area (RA) in those sectors classified as abnormal by MRA (Moorfields Regression Analysis) of HRT. Results: The mean age was 65 (range= [37, 89]). The global sensitivity versus specificity of each instrument in detecting glaucomatous eyes was: MDT 80% vs. 88%, SAP 80% vs. 80%, PP 70% vs. 89% and HRT 80% vs. 79%. Highest percentage agreement of HRT (respectively G1, G2, sector) with PSM were MDT (89%, 57%, nasal superior), SAP (83%, 74%, temporal superior), PP (74%, 63%, nasal superior). Globally percentage agreement (respectively G1, G2) was MDT (92%, 28%), SAP (87%, 40%) and PP (77%, 49%). Linear regression showed there was no significant trend globally associating RA and PSM. However, sectorally the supero-nasal sector had a statistically significant (p<0.001) trend with each instrument, the associated r2 coefficients are (MDT 0.38 SAP 0.56 and PP 0.39). Conclusions: There were no significant differences in global sensitivity or specificity between instruments. Structure-function relationships varied significantly between instruments and were consistently strongest supero-nasally. Further studies are required to investigate these relationships in detail.
Resumo:
Abstract We sought to know the spectra of mothers of premature children regarding their experience with circle of culture of educational character and identifying the learning provided by the circle of culture about newborn care after hospital discharge. A descriptive study was performed in a hospital located in Fortaleza, Brazil. Three meetings of a circle of culture with 17 mothers of premature newborns were performed. The interpretation of the corpus was performed using thematic analysis. Emerged from the categories: Maternal experience in a circle of culture; Promoted social support among mothers through the circle of culture; and Learning provided by the circle of culture. It was concluded that teaching parents during the hospitalization of the child should be held in a way to involve parents in the care of the newborn, provide moments of health education, opportunities for support and dialogue between professionals and family.
Where do industrial workers go after plant closure? Survey evidence two years after job displacement
Resumo:
Accomplish high quality of final products in pharmaceutical industry is a challenge that requires the control and supervision of all the manufacturing steps. This request created the necessity of developing fast and accurate analytical methods. Near infrared spectroscopy together with chemometrics, fulfill this growing demand. The high speed providing relevant information and the versatility of its application to different types of samples lead these combined techniques as one of the most appropriated. This study is focused on the development of a calibration model able to determine amounts of API from industrial granulates using NIR, chemometrics and process spectra methodology.
Resumo:
subsequent extension-induced exhumation. Geochronological dating of various Structural, thermobarometric, and geochronological data place limits on the age and tectonic displacement along the Zanskar shear zone, a major north-dipping synorogenic extensional structure separating the high-grade metamorphic sequence of the High Himalayan Crystalline Sequence from the overlying low-grade sedimentary rocks of the Tethyan Himalaya, A complete Barrovian metamorphic succession, from kyanite to biotite zone mineral assemblages, occurs within the I-km-thick Zanskar shear zone. Thermobarometric data indicate a difference In equilibration depths of 12 +/- 3 km between the lower kyanite zone and the garnet zone, which is Interpreted as a minimum estimate for the finite vertical displacement accommodated by the Zanskar shear zone. For the present-day dip of the structure (20 degrees), a simple geometrical model shows that a net slip of 35 +/- 9 km is required to regroup these samples to the same structural level. Because the kyanite to garnet zone rocks represent only part of the Zanskar shear zone, and because its original dip may have been less than the present-day dip, these estimates fur the finite displacement represent minimum values. Field relations and petrographic data suggest that migmatization and associated leucogranite intrusion in the footwall of the Zanskar shear zone occurred as a continuous profess starting at the Barrovian metamorphic peak and lasting throughout the subsequent extension-induced exhumation. Geochronological dataing of various leucogranitic plutons and dikes in the Zanskar shear zone footwall indicates that the main ductile shearing along the structure ended by 19.8 Ma and that extension most likely initiated shortly before 22.2 Ma.
Resumo:
We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.
Resumo:
In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.
Resumo:
We report on experiments aimed at comparing the hysteretic response of a Cu-Zn-Al single crystal undergoing a martensitic transition under strain-driven and stress-driven conditions. Strain-driven experiments were performed using a conventional tensile machine while a special device was designed to perform stress-driven experiments. Significant differences in the hysteresis loops were found. The strain-driven curves show reentrant behavior yield point which is not observed in the stress-driven case. The dissipated energy in the stress-driven curves is larger than in the strain-driven ones. Results from recently proposed models qualitatively agree with experiments.