945 resultados para discrete velocity models
Resumo:
Invasion waves of cells play an important role in development, disease and repair. Standard discrete models of such processes typically involve simulating cell motility, cell proliferation and cell-to-cell crowding effects in a lattice-based framework. The continuum-limit description is often given by a reaction–diffusion equation that is related to the Fisher–Kolmogorov equation. One of the limitations of a standard lattice-based approach is that real cells move and proliferate in continuous space and are not restricted to a predefined lattice structure. We present a lattice-free model of cell motility and proliferation, with cell-to-cell crowding effects, and we use the model to replicate invasion wave-type behaviour. The continuum-limit description of the discrete model is a reaction–diffusion equation with a proliferation term that is different from lattice-based models. Comparing lattice based and lattice-free simulations indicates that both models lead to invasion fronts that are similar at the leading edge, where the cell density is low. Conversely, the two models make different predictions in the high density region of the domain, well behind the leading edge. We analyse the continuum-limit description of the lattice based and lattice-free models to show that both give rise to invasion wave type solutions that move with the same speed but have very different shapes. We explore the significance of these differences by calibrating the parameters in the standard Fisher–Kolmogorov equation using data from the lattice-free model. We conclude that estimating parameters using this kind of standard procedure can produce misleading results.
Resumo:
This thesis concerns the mathematical model of moving fluid interfaces in a Hele-Shaw cell: an experimental device in which fluid flow is studied by sandwiching the fluid between two closely separated plates. Analytic and numerical methods are developed to gain new insights into interfacial stability and bubble evolution, and the influence of different boundary effects is examined. In particular, the properties of the velocity-dependent kinetic undercooling boundary condition are analysed, with regard to the selection of only discrete possible shapes of travelling fingers of fluid, the formation of corners on the interface, and the interaction of kinetic undercooling with the better known effect of surface tension. Explicit solutions to the problem of an expanding or contracting ring of fluid are also developed.
Resumo:
Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.
Resumo:
This paper applies Micken's discretization method to obtain a discrete-time SEIR epidemic model. The positivity of the model along with the existence and stability of equilibrium points is discussed for the discrete-time case. Afterwards, the design of a state observer for this discrete-time SEIR epidemic model is tackled. The analysis of the model along with the observer design is faced in an implicit way instead of obtaining first an explicit formulation of the system which is the novelty of the presented approach. Moreover, some sufficient conditions to ensure the asymptotic stability of the observer are provided in terms of a matrix inequality that can be cast in the form of a LMI. The feasibility of the matrix inequality is proved, while some simulation examples show the operation and usefulness of the observer.
Resumo:
The ultimate objective of the research conducted by the authors is to explore the feasibility of determining reliable in situ values of soil modulus as a function of strain. In field experiments, an excitation is applied on the ground surface using large-scale shakers, and the response of the soil deposit is recorded through receivers embedded in the soil. The focus of this paper is on the simulation and observation of signals that would be recorded at the receiver locations under idealized conditions to provide guidelines on the interpretation of the field measurements. Discrete models are used to reproduce one-dimensional and three-dimensional geometries. When the first times of arrival are detected by receivers under the vertical impulse, they coincide with the arrival of the P wave; therefore related to the constrained modulus of the material. If one considers, on the other hand, phase differences between the motions at two receivers, the picture is far more complicated and one would obtain propagation velocities, function of frequency and measuring location, which do not correspond to either the constrained modulus or Young's modulus. It is necessary then to conduct more rigorous and complicated analyses in order to interpret the data. This paper discusses and illustrates these points. Copyright © 2008 John Wiley & Sons, Ltd.
Resumo:
Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation. © 2013 AIP Publishing LLC.
Resumo:
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.
Resumo:
Two kinds of process models have been used in programs that reason about change: Discrete and continuous models. We describe the design and implementation of a qualitative simulator, PEPTIDE, which uses both kinds of process models to predict the behavior of molecular energetic systems. The program uses a discrete process model to simulate both situations involving abrupt changes in quantities and the actions of small numbers of molecules. It uses a continuous process model to predict gradual changes in quantities. A novel technique, called aggregation, allows the simulator to switch between theses models through the recognition and summary of cycles. The flexibility of PEPTIDE's aggregator allows the program to detect cycles within cycles and predict the behavior of complex situations.
Resumo:
A conventional local model (LM) network consists of a set of affine local models blended together using appropriate weighting functions. Such networks have poor interpretability since the dynamics of the blended network are only weakly related to the underlying local models. In contrast, velocity-based LM networks employ strictly linear local models to provide a transparent framework for nonlinear modelling in which the global dynamics are a simple linear combination of the local model dynamics. A novel approach for constructing continuous-time velocity-based networks from plant data is presented. Key issues including continuous-time parameter estimation, correct realisation of the velocity-based local models and avoidance of the input derivative are all addressed. Application results are reported for the highly nonlinear simulated continuous stirred tank reactor process.
Resumo:
Many of the challenges faced in health care delivery can be informed through building models. In particular, Discrete Conditional Survival (DCS) models, recently under development, can provide policymakers with a flexible tool to assess time-to-event data. The DCS model is capable of modelling the survival curve based on various underlying distribution types and is capable of clustering or grouping observations (based on other covariate information) external to the distribution fits. The flexibility of the model comes through the choice of data mining techniques that are available in ascertaining the different subsets and also in the choice of distribution types available in modelling these informed subsets. This paper presents an illustrated example of the Discrete Conditional Survival model being deployed to represent ambulance response-times by a fully parameterised model. This model is contrasted against use of a parametric accelerated failure-time model, illustrating the strength and usefulness of Discrete Conditional Survival models.
Resumo:
The identification of nonlinear dynamic systems using radial basis function (RBF) neural models is studied in this paper. Given a model selection criterion, the main objective is to effectively and efficiently build a parsimonious compact neural model that generalizes well over unseen data. This is achieved by simultaneous model structure selection and optimization of the parameters over the continuous parameter space. It is a mixed-integer hard problem, and a unified analytic framework is proposed to enable an effective and efficient two-stage mixed discrete-continuous; identification procedure. This novel framework combines the advantages of an iterative discrete two-stage subset selection technique for model structure determination and the calculus-based continuous optimization of the model parameters. Computational complexity analysis and simulation studies confirm the efficacy of the proposed algorithm.
Resumo:
Discrete Conditional Phase-type (DC-Ph) models consist of a process component (survival distribution) preceded by a set of related conditional discrete variables. This paper introduces a DC-Ph model where the conditional component is a classification tree. The approach is utilised for modelling health service capacities by better predicting service times, as captured by Coxian Phase-type distributions, interfaced with results from a classification tree algorithm. To illustrate the approach, a case-study within the healthcare delivery domain is given, namely that of maternity services. The classification analysis is shown to give good predictors for complications during childbirth. Based on the classification tree predictions, the duration of childbirth on the labour ward is then modelled as either a two or three-phase Coxian distribution. The resulting DC-Ph model is used to calculate the number of patients and associated bed occupancies, patient turnover, and to model the consequences of changes to risk status.