995 resultados para direct reduction
Resumo:
After major volcanic eruptions the enhanced aerosol causes ozone changes due to greater heterogeneous chemistry on the particle surfaces (HET-AER) and from dynamical effects related to the radiative heating of the lower stratosphere (RAD-DYN). We carry out a series of experiments with an atmosphere–ocean–chemistry–climate model to assess how these two processes change stratospheric ozone and Northern Hemispheric (NH) polar vortex dynamics. Ensemble simulations are performed under present day and preindustrial conditions, and with aerosol forcings representative of different eruption strength, to investigate changes in the response behaviour. We show that the halogen component of the HET-AER effect dominates under present-day conditions with a global reduction of ozone (−21 DU for the strongest eruption) particularly at high latitudes, whereas the HET-AER effect increases stratospheric ozone due to N2O5 hydrolysis in a preindustrial atmosphere (maximum anomalies +4 DU). The halogen-induced ozone changes in the present-day atmosphere offset part of the strengthening of the NH polar vortex during mid-winter (reduction of up to −16 m s-1 in January) and slightly amplify the dynamical changes in the polar stratosphere in late winter (+11 m s-1 in March). The RAD-DYN mechanism leads to positive column ozone anomalies which are reduced in a present-day atmosphere by amplified polar ozone depletion (maximum anomalies +12 and +18 DU for present day and preindustrial, respectively). For preindustrial conditions, the ozone response is consequently dominated by RAD-DYN processes, while under present-day conditions, HET-AER effects dominate. The dynamical response of the stratosphere is dominated by the RAD-DYN mechanism showing an intensification of the NH polar vortex in winter (up to +10 m s-1 in January). Ozone changes due to the RAD-DYN mechanism slightly reduce the response of the polar vortex after the eruption under present-day conditions.
Resumo:
The oxylipin pathway is of central importance for plant defensive responses. Yet, the first step of the pathway, the liberation of linolenic acid following induction, is poorly understood. Phospholipases D (PLDs) have been hypothesized to mediate this process, but data from Arabidopsis (Arabidopsis thaliana) regarding the role of PLDs in plant resistance have remained controversial. Here, we cloned two chloroplast-localized PLD genes from rice (Oryza sativa), OsPLDα4 and OsPLDα5, both of which were up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis, mechanical wounding, and treatment with jasmonic acid (JA). Antisense expression of OsPLDα4 and -α5 (as-pld), which resulted in a 50% reduction of the expression of the two genes, reduced elicited levels of linolenic acid, JA, green leaf volatiles, and ethylene and attenuated the SSB-induced expression of a mitogen-activated protein kinase (OsMPK3), a lipoxygenase (OsHI-LOX), a hydroperoxide lyase (OsHPL3), as well as a 1-aminocyclopropane-1-carboxylic acid synthase (OsACS2). The impaired oxylipin and ethylene signaling in as-pld plants decreased the levels of herbivore-induced trypsin protease inhibitors and volatiles, improved the performance of SSB and the rice brown planthopper Nilaparvata lugens, and reduced the attractiveness of plants to a larval parasitoid of SSB, Apanteles chilonis. The production of trypsin protease inhibitors in as-pld plants could be partially restored by JA, while the resistance to rice brown planthopper and SSB was restored by green leaf volatile application. Our results show that phospholipases function as important components of herbivore-induced direct and indirect defenses in rice.
Resumo:
OBJECTIVE To evaluate the role of an ultra-low-dose dual-source CT coronary angiography (CTCA) scan with high pitch for delimiting the range of the subsequent standard CTCA scan. METHODS 30 patients with an indication for CTCA were prospectively examined using a two-scan dual-source CTCA protocol (2.0 × 64.0 × 0.6 mm; pitch, 3.4; rotation time of 280 ms; 100 kV): Scan 1 was acquired with one-fifth of the tube current suggested by the automatic exposure control software [CareDose 4D™ (Siemens Healthcare, Erlangen, Germany) using 100 kV and 370 mAs as a reference] with the scan length from the tracheal bifurcation to the diaphragmatic border. Scan 2 was acquired with standard tube current extending with reduced scan length based on Scan 1. Nine central coronary artery segments were analysed qualitatively on both scans. RESULTS Scan 2 (105.1 ± 10.1 mm) was significantly shorter than Scan 1 (127.0 ± 8.7 mm). Image quality scores were significantly better for Scan 2. However, in 5 of 6 (83%) patients with stenotic coronary artery disease, a stenosis was already detected in Scan 1 and in 13 of 24 (54%) patients with non-stenotic coronary arteries, a stenosis was already excluded by Scan 1. Using Scan 2 as reference, the positive- and negative-predictive value of Scan 1 was 83% (5 of 6 patients) and 100% (13 of 13 patients), respectively. CONCLUSION An ultra-low-dose CTCA planning scan enables a reliable scan length reduction of the following standard CTCA scan and allows for correct diagnosis in a substantial proportion of patients. ADVANCES IN KNOWLEDGE Further dose reductions are possible owing to a change in the individual patient's imaging strategy as a prior ultra-low-dose CTCA scan may already rule out the presence of a stenosis or may lead to a direct transferal to an invasive catheter procedure.
Resumo:
The relationship between degree of diastolic blood pressure (DBP) reduction and mortality was examined among hypertensives, ages 30-69, in the Hypertension Detection and Follow-up Program (HDFP). The HDFP was a multi-center community-based trial, which followed 10,940 hypertensive participants for five years. One-year survival was required for inclusion in this investigation since the one-year annual visit was the first occasion where change in blood pressure could be measured on all participants. During the subsequent four years of follow-up on 10,052 participants, 568 deaths occurred. For levels of change in DBP and for categories of variables related to mortality, the crude mortality rate was calculated. Time-dependent life tables were also calculated so as to utilize available blood pressure data over time. In addition, the Cox life table regression model, extended to take into account both time-constant and time-dependent covariates, was used to examine the relationship change in blood pressure over time and mortality.^ The results of the time-dependent life table and time-dependent Cox life table regression analyses supported the existence of a quadratic function which modeled the relationship between DBP reduction and mortality, even after adjusting for other risk factors. The minimum mortality hazard ratio, based on a particular model, occurred at a DBP reduction of 22.6 mm Hg (standard error = 10.6) in the whole population and 8.5 mm Hg (standard error = 4.6) in the baseline DBP stratum 90-104. After this reduction, there was a small increase in the risk of death. There was not evidence of the quadratic function after fitting the same model using systolic blood pressure. Methodologic issues involved in studying a particular degree of blood pressure reduction were considered. The confidence interval around the change corresponding to the minimum hazard ratio was wide and the obtained blood pressure level should not be interpreted as a goal for treatment. Blood pressure reduction was attributed, not only to pharmacologic therapy, but also to regression to the mean, and to other unknown factors unrelated to treatment. Therefore, the surprising results of this study do not provide direct implications for treatment, but strongly suggest replication in other populations. ^
Resumo:
As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15-8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.
Resumo:
Energía termosolar (de concentración) es uno de los nombres que hacen referencia en español al término inglés “concentrating solar power”. Se trata de una tecnología basada en la captura de la potencia térmica de la radiación solar, de forma que permita alcanzar temperaturas capaces de alimentar un ciclo termodinámico convencional (o avanzado); el futuro de esta tecnología depende principalmente de su capacidad para concentrar la radiación solar de manera eficiente y económica. La presente tesis está orientada hacia la resolución de ciertos problemas importantes relacionados con este objetivo. La mencionada necesidad de reducir costes en la concentración de radiación solar directa, asegurando el objetivo termodinámico de calentar un fluido hasta una determinada temperatura, es de vital importancia. Los colectores lineales Fresnel han sido identificados en la literatura científica como una tecnología con gran potencial para alcanzar esta reducción de costes. Dicha tecnología ha sido seleccionada por numerosas razones, entre las que destacan su gran libertad de diseño y su actual estado inmaduro. Con el objetivo de responder a este desafío se desarrollado un detallado estudio de las propiedades ópticas de los colectores lineales Fresnel, para lo cual se han utilizado métodos analíticos y numéricos de manera combinada. En primer lugar, se han usado unos modelos para la predicción de la localización y la irradiación normal directa del sol junto a unas relaciones analíticas desarrolladas para estudiar el efecto de múltiples variables de diseño en la energía incidente sobre los espejos. Del mismo modo, se han obtenido analíticamente los errores debidos al llamado “off-axis aberration”, a la apertura de los rayos reflejados en los espejos y a las sombras y bloqueos entre espejos. Esto ha permitido la comparación de diferentes formas de espejo –planos, circulares o parabólicos–, así como el diseño preliminar de la localización y anchura de los espejos y receptor sin necesidad de costosos métodos numéricos. En segundo lugar, se ha desarrollado un modelo de trazado de rayos de Monte Carlo con el objetivo de comprobar la validez del estudio analítico, pero sobre todo porque este no es preciso en el estudio de la reflexión en espejos. El código desarrollado está específicamente ideado para colectores lineales Fresnel, lo que ha permitido la reducción del tiempo de cálculo en varios órdenes de magnitud en comparación con un programa comercial más general. Esto justifica el desarrollo de un nuevo código en lugar de la compra de una licencia de otro programa. El modelo ha sido usado primeramente para comparar la intensidad de flujo térmico y rendimiento de colectores Fresnel, con y sin reflector secundario, con los colectores cilíndrico parabólicos. Finalmente, la conjunción de los resultados obtenidos en el estudio analítico con el programa numérico ha sido usada para optimizar el campo solar para diferentes orientaciones –Norte-Sur y Este-Oeste–, diferentes localizaciones –Almería y Aswan–, diferentes inclinaciones hacia el Trópico –desde 0 deg hasta 32 deg– y diferentes mínimos de intensidad del flujo en el centro del receptor –10 kW/m2 y 25 kW/m2–. La presente tesis ha conducido a importantes descubrimientos que deben ser considerados a la hora de diseñar un campo solar Fresnel. En primer lugar, los espejos utilizados no deben ser plano, sino cilíndricos o parabólicos, ya que los espejos curvos implican mayores concentraciones y rendimiento. Por otro lado, se ha llegado a la conclusión de que la orientación Este-Oeste es más propicia para localizaciones con altas latitudes, como Almería, mientras que en zonas más cercanas a los trópicos como Aswan los campos Norte-Sur conducen a mayores rendimientos. Es de destacar que la orientación Este-Oeste requiere aproximadamente la mitad de espejos que los campos Norte-Sur, puediendo estar inclinados hacia los Trópicos para mejorar el rendimiento, y que alcanzan parecidos valores de intensidad térmica en el receptor todos los días a mediodía. Sin embargo, los campos con orientación Norte-Sur permiten un flujo más constante a lo largo de un día. Por último, ha sido demostrado que el uso de diseños pre-optimizados analíticamente, con anchura de espejos y espaciado entre espejos variables a lo ancho del campo, pueden implicar aumentos de la energía generada por metro cuadrado de espejos de hasta el 6%. El rendimiento óptico anual de los colectores cilíndrico parabólicos es 23 % mayor que el rendimiento de los campos Fresnel en Almería, mientras que la diferencia es de solo 9 % en Aswan. Ello implica que, para alcanzar el mismo precio de electricidad que la tecnología de referencia, la reducción de costes de instalación por metro cuadrado de espejo debe estar entre el 10 % y el 25 %, y que los colectores lineales Fresnel tienen más posibilidades de ser desarrollados en zonas de bajas latitudes. Como consecuencia de los estudios desarrollados en esta tesis se ha patentado un sistema de almacenamiento que tiene en cuenta la variación del flujo térmico en el receptor a lo largo del día, especialmente para campos con orientación Este-Oeste. Este invento permitiría el aprovechamiento de la energía incidente durante más parte del año, aumentando de manera apreciable los rendimientos óptico y térmico. Abstract Concentrating solar power is the common name of a technology based on capturing the thermal power of solar radiation, in a suitable way to reach temperatures able to activate a conventional (or advanced) thermodynamic cycle to generate electricity; this quest mainly depends on our ability to concentrate solar radiation in a cheap and efficient way. The present thesis is focused to highlight and help solving some of the important issues related to this problem. The need of reducing costs in concentrating the direct solar radiation, but without jeopardizing the thermodynamic objective of heating a fluid up to the required temperature, is of prime importance. Linear Fresnel collectors have been identified in the scientific literature as a technology with high potential to reach this cost reduction. This technology has been selected because of a number of reasons, particularly the degrees of freedom of this type of concentrating configuration and its current immature state. In order to respond to this challenge, a very detailed exercise has been carried out on the optical properties of linear Fresnel collectors. This has been done combining analytic and numerical methods. First, the effect of the design variables on the ratio of energy impinging onto the reflecting surface has been studied using analytically developed equations, together with models that predict the location and direct normal irradiance of the sun at any moment. Similarly, errors due to off-axis aberration, to the aperture of the reflected energy beam and to shading and blocking effects have been obtained analytically. This has allowed the comparison of different shapes of mirrors –flat, cylindrical or parabolic–, as well as a preliminary optimization of the location and width of mirrors and receiver with no need of time-consuming numerical models. Second, in order to prove the validity of the analytic results, but also due to the fact that the study of the reflection process is not precise enough when using analytic equations, a Monte Carlo Ray Trace model has been developed. The developed code is designed specifically for linear Fresnel collectors, which has reduced the computing time by several orders of magnitude compared to a wider commercial software. This justifies the development of the new code. The model has been first used to compare radiation flux intensities and efficiencies of linear Fresnel collectors, both multitube receiver and secondary reflector receiver technologies, with parabolic trough collectors. Finally, the results obtained in the analytic study together with the numeric model have used in order to optimize the solar field for different orientations –North-South and East-West–, different locations –Almería and Aswan–, different tilts of the field towards the Tropic –from 0 deg to 32 deg– and different flux intensity minimum requirements –10 kW/m2 and 25 kW/m2. This thesis work has led to several important findings that should be considered in the design of Fresnel solar fields. First, flat mirrors should not be used in any case, as cylindrical and parabolic mirrors lead to higher flux intensities and efficiencies. Second, it has been concluded that, in locations relatively far from the Tropics such as Almería, East-West embodiments are more efficient, while in Aswan North- South orientation leads to a higher annual efficiency. It must be noted that East-West oriented solar fields require approximately half the number of mirrors than NS oriented fields, can be tilted towards the Equator in order to increase the efficiency and attain similar values of flux intensity at the receiver every day at midday. On the other hand, in NS embodiments the flux intensity is more even during each single day. Finally, it has been proved that the use of analytic designs with variable shift between mirrors and variable width of mirrors across the field can lead to improvements in the electricity generated per reflecting surface square meter up to 6%. The annual optical efficiency of parabolic troughs has been found to be 23% higher than the efficiency of Fresnel fields in Almería, but it is only around 9% higher in Aswan. This implies that, in order to attain the same levelized cost of electricity than parabolic troughs, the required reduction of installation costs per mirror square meter is in the range of 10-25%. Also, it is concluded that linear Fresnel collectors are more suitable for low latitude areas. As a consequence of the studies carried out in this thesis, an innovative storage system has been patented. This system takes into account the variation of the flux intensity along the day, especially for East-West oriented solar fields. As a result, the invention would allow to exploit the impinging radiation along longer time every day, increasing appreciably the optical and thermal efficiencies.
Resumo:
Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.
Resumo:
The primase DnaG of Escherichia coli requires the participation of the replicative helicase DnaB for optimal synthesis of primer RNA for lagging strand replication. However, previous studies had not determined whether the activation of the primase or its loading on the template was accomplished by a helicase-mediated structural alteration of the single-stranded DNA or by a direct physical interaction between the DnaB and the DnaG proteins. In this paper we present evidence supporting direct interaction between the two proteins. We have mapped the surfaces of interaction on both DnaG and DnaB and show further that mutations that reduce the physical interaction also cause a significant reduction in primer synthesis. Thus, the physical interaction reported here appears to be physiologically significant.
Resumo:
In bacterial photosynthetic reaction centers, the protonation events associated with the different reduction states of the two quinone molecules constitute intrinsic probes of both the electrostatic interactions and the different kinetic events occurring within the protein in response to the light-generated introduction of a charge. The kinetics and stoichiometries of proton uptake on formation of the primary semiquinone QA− and the secondary acceptor QB− after the first and second flashes have been measured, at pH 7.5, in reaction centers from genetically modified strains and from the wild type. The modified strains are mutated at the L212Glu and/or at the L213Asp sites near QB; some of them carry additional mutations distant from the quinone sites (M231Arg → Leu, M43Asn → Asp, M5Asn → Asp) that compensate for the loss of L213Asp. Our data show that the mutations perturb the response of the protein system to the formation of a semiquinone, how distant compensatory mutations can restore the normal response, and the activity of a tyrosine residue (M247Ala → Tyr) in increasing and accelerating proton uptake. The data demonstrate a direct correlation between the kinetic events of proton uptake that are observed with the formation of either QA− or QB−, suggesting that the same residues respond to the generation of either semiquinone species. Therefore, the efficiency of transferring the first proton to QB is evident from examination of the pattern of H+/QA− proton uptake. This delocalized response of the protein complex to the introduction of a charge is coordinated by an interactive network that links the Q− species, polarizable residues, and numerous water molecules that are located in this region of the reaction center structure. This could be a general property of transmembrane redox proteins that couple electron transfer to proton uptake/release reactions.
Resumo:
Glucocorticoids exert multiple anti-inflammatory activities, one of which is the inhibition of transcription dependent on the nuclear factor (NF)-κB. It has been suggested that the effect of dexamethasone (DEX), a glucocorticoid analog, is attributed to an increased production of the inhibitory IκB molecule, which in turn would bind and remove activated, DNA-bound NF-κB complexes in the cell nucleus. Upon investigating DEX-mediated repression of interleukin-6 expression induced by tumor necrosis factor, DEX treatment was found to act directly on NF-κB-dependent transcription, without changing the expression level of IκB. Neither the mRNA of IκB nor the protein was significantly elevated by a combined treatment with tumor necrosis factor and DEX of murine endothelial or fibroblast cells. The DNA-binding activity of induced NF-κB also remained unchanged after stimulation of cells with DEX. Evidence for a direct nuclear mechanism of action was obtained by analysis of cell lines stably expressing a fusion protein between the DNA-binding domain of the yeast Gal4 protein and the transactivating p65 subunit of NF-κB. Expression of a Gal4-dependent luciferase reporter gene activated by this nuclear fusion protein was also strongly repressed after addition of DEX. Because the DNA-binding activity of the Gal4 fusion protein was not affected by DEX, it can be concluded that the reduction of gene activation was caused by interference of the activated glucocorticoid receptor with the transactivation potential of the NF-κB p65 subunit.
Resumo:
Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-A crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.
Resumo:
Recoverable (Sa)-binam-l-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and α-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine−iminium intermediates.
Resumo:
The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.
Resumo:
The reduction of the band gap of titania is critically important to fully utilize its photocatalytic properties. Two main strategies, i.e. doping and partial reduction of Ti(IV), are the main alternatives available to date. Herein, we report a new synthesis strategy based on one-pot co-condensation of in situ prepared polymetallic titanium-alkoxide complexes with titanium tetrabutoxide. Using this direct reaction, it is possible to introduce organic compounds in the anatase phase, causing site distortions in the crystalline structure of the network. By using this strategy, a yellow and a black titania have been produced, with the latter showing a remarkable photocatalytic activity under visible-light.