108 resultados para dioxins
Resumo:
A tecnologia de incineração no gerenciamento de resíduos sólidos urbanos é empregada de maneira intensa em diversos países do mundo. No Brasil, além da sua utilização eventual em resíduos de serviços de saúde, há uma proposta para implantação de duas usinas de grande porte visando ao tratamento térmico de resíduos sólidos domiciliares na cidade de São Paulo. Através de uma revisão bibliográfica sobre o tema, são apresentados os principais parâmetros técnicos e ambientais desta tecnologia, entre eles os mecanismos de combustão e de formação de poluentes, os tipos de equipamentos empregados, as formas de manejo e disposição de cinzas e escórias e os métodos de controle e redução de emissões atmosféricas como gases ácidos, material particulado e metais pesados. Também é feita uma revisão do atual conhecimento técnico-científico sobre dioxinas e furanos relativamente à incineração de resíduos sólidos urbanos. A partir desta base teórica pesquisada e da análise dos Estudos de Impacto Ambiental e dos Relatórios de Impacto Ambiental das usinas de incineração de Santo Amaro e Sapopemba, conclui-se que tais incineradores, na forma como são propostos, não apresentam o nível tecnológico necessário para atender às normas de operação e emissão de poluentes vigentes em países onde há legislação regulando esta atividade.
Resumo:
O processo tradicional de recuperação de metais de resíduos de equipamentos eletroeletrônicos (REEE) geralmente envolve processamento pirometalúrgico. Entretanto, o uso desta tecnologia para processar placas de circuito impresso (PCI) obsoletas pode levar à liberação de dioxinas e furanos, devido à decomposição térmica de retardantes de chama e resinas poliméricas presentes no substrato das placas. Portanto, este trabalho propõe uma rota hidrometalúrgica para recuperação de metais. O comportamento dos metais, com destaque para cobre, zinco e níquel, durante a lixiviação ácida, foi estudado em três temperaturas diferentes (35ºC, 65ºC e 75ºC), com e sem adição de um agente oxidante (peróxido de hidrogênio H2O2). A cinética de dissolução ácida desses metais foi estudada baseada na análise química por ICP-OES (Espectrometria de emissão ótica por plasma acoplado indutivamente) e EDX (Espectroscopia de fluorescência de raios-X por energia dispersiva). O balanço de massa e a análise química indicaram que a etapa de lixiviação sem adição de oxidante é pouco eficaz na extração dos metais, sendo responsável pela dissolução de menos do que 6% do total extraído. A 65ºC e H2SO4 1 mol/L, com adição de 5 mL de H2O2 (30%) a cada quinze minutos e densidade de polpa de 1 g / 10 mL, 98,1% do cobre, 99,9% do zinco e 99,0% do níquel foram extraídos após 4 horas. A cinética de dissolução desses metais é controlada pela etapa da reação química, seguindo, dependendo da temperatura, a equação 1 (1 XB)1/3 = k1.t ou a equação ln (1 XB) = k4.t.
Resumo:
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant worldwide. A detailed examination of the degradation products emitted during thermal decomposition of TBBPA is presented in the study. Runs were performed in a laboratory furnace at different temperatures (650 and 800 °C) and in different atmospheres (nitrogen and air). More than one hundred semivolatile compounds have been identified by GC/MS, with special interest in brominated ones. Presence of HBr and brominated light hydrocarbons increased with temperature and in the presence of oxygen. Maximum formation of PAHs is observed at pyrolytic condition at the higher temperature. High levels of 2,4-, 2,6- and 2,4,6- bromophenols were found. The levels of polybrominated dibenzo-p-dioxins and furans have been detected in the ppm range. The most abundant isomers are 2,4,6,8-TeBDF in pyrolysis and 1,2,3,7,8-PeBDF in combustion. These results should be considered in the assessment of thermal treatment of materials containing brominated flame retardants.
Resumo:
Combustion runs at 700 °C in a horizontal laboratory furnace were carried out on two different electric wires (PVC and halogen-free wire). Tests were performed in the presence and in the absence of the metal conductor of the wires. The analyses of the polycyclic aromatic hydrocarbons (PAHs), chlorobenzenes (CBzs), chlorophenols (CPhs), mono- to octa-chlorodibenzo-p-dioxin and dibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, PAHs production decreases in the presence of metal, while a higher amount of chlorinated compounds are emitted. Respect to the PCDD/Fs, the PVC wire in the presence of metal presents the highest emission, with a much more emission of furans than dioxins. The maximum emission is with 2 or 3 chlorine atom PCDD/Fs. PCBs emission correlates with PCDD/F production and represents 3–4% of total toxicity, determined by using WHO2005 factors.
Resumo:
Car Fluff samples collected from a shredding plant in Italy were classified based on particle size, and three different size fractions were obtained in this way. A comparison between these size fractions and the original light fluff was made from two different points of view: (i) the properties of each size fraction as a fuel were evaluated and (ii) the pollutants evolved when each size fraction was subjected to combustion were studied. The aim was to establish which size fraction would be the most suitable for the purposes of energy recovery. The light fluff analyzed contained up to 50 wt.% fines (particle size < 20 mm). However, its low calorific value and high emissions of polychlorinated dioxins and furans (PCDD/Fs), generated during combustion, make the fines fraction inappropriate for energy recovery, and therefore, landfilling would be the best option. The 50–100 mm fraction exhibited a high calorific value and low PCDD/F emissions were generated when the sample was combusted, making it the most suitable fraction for use as refuse-derived fuel (RDF). Results obtained suggest that removing fines from the original ASR sample would lead to a material product that is more suitable for use as RDF.
Resumo:
Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.
Resumo:
Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.
Resumo:
Paper submitted to the 19th International Symposium on Analytical & Applied Pyrolysis, Linz, Austria, 21-25 May 2012.
Resumo:
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) have been studied for several decades and are well-known as unintentionally generated persistent organic pollutants (POPs), which pose serious health and environmental risks on a global scale1. Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/F) have similar properties and effects to PCDD/F, as they are structural analogs with all the chlorine atoms substituted by bromine atoms. PBDD/F have been found in various matrices such as air, sediments, marine products, and human adipose samples.
Resumo:
Polyvinyl chloride (PVC) is one of the plastics most extensively used due to its versatility. The demand of PVC resin in Europe during 2012 reached 5000 ktonnes1. PVC waste management is a big problem because of the high volume generated all over the world and its chlorine content. End-of-life PVC is mainly mixed with municipal solid waste (MSW) and one common disposal option for this is waste-to-energy incineration (WtE). The presence of plastics such as PVC in the fuel mix increases the heating value of the fuel. PVC has two times higher energy content than MSW ‒around 20 MJ/kg vs 10 MJ/kg, respectively. However, the high chlorine content in PVC resin, 57 wt.%, may be a source for the formation of hazardous chlorinated organic pollutants in thermal processes. Chlorine present in the feedstock of WtE plants plays an important role in the formation of (i) chlorine (Cl2) and (ii) hydrochloric gas (HCl), both of them responsible for corrosion, and (iii) chlorinated organic pollutants2. In this work, pyrolytic and oxidative thermal degradation of PVC resin were carried out in a laboratory scale reactor at 500 ºC in order to analyze the influence of the reaction atmosphere on the emissions evolved. Special emphasis was put on the analysis of chlorinated organic pollutants such as polychlorodibenzo-p-dioxins (PCDDs), polychlorodibenzofurans (PCDFs) and other related compounds like polychlorobenzenes (PCBzs), polychlorophenols (PCPhs) and polycyclic aromatic hydrocarbons (PAHs). Another objective of this work was to compare the results with those of a previous work3 in which emissions at different temperatures in both pyrolysis and combustion of another PVC resin had been studied; in that case, experiments for PCDD/Fs emissions had been performed only at 850 ºC.
Resumo:
Resumen del póster presentado en Symposium on Renewable Energy and Products from Biomass and Waste, CIUDEN (Cubillos de Sil, León, Spain), 12-13 May 2015
Resumo:
Thermal decomposition of flexible polyurethane foam (FPUF) was studied under nitrogen and air atmospheres at 550 °C and 850 °C using a laboratory scale reactor to analyse the evolved products. Ammonia, hydrogen cyanide and nitrile compounds were obtained in high yields in pyrolysis at the lower temperature, whereas at 850 °C polycyclic aromatic hydrocarbons (PAHs) and other semivolatile compounds, especially compounds containing nitrogen (benzonitrile, aniline, quinolone and indene) were the most abundant products. Different behaviour was observed in the evolution of polychlorodibenzo-p-dioxins and furans (PCDD/Fs) at 550 °C and 850 °C. At 550 °C, the less chlorinated congeners, mainly PCDF, were more abundant. Contrarily, at 850 °C the most chlorinated PCDD were dominant. In addition, the total yields of PCDD/Fs in the pyrolysis and combustion runs at 850 °C were low and quite similar.
Resumo:
Project manager: Gary Amendola
Resumo:
"B-266331"--P. 1.
Resumo:
Tissue samples of liver and blubber were salvaged from fifty-three dugong (Dugong dugon) carcasses stranded along the Queensland coast between 1996 and 2000. Liver tissue was analysed for a range of heavy metals and blubber samples were analysed for organochlorine compounds. Metal concentrations were similar in male and female animals and were generally highest in mature animals. Liver concentrations of arsenic, chromium, iron, lead, manganese, mercury and nickel in a number of individual animals were elevated in comparison to concentrations previously reported in Australian dugong. Dieldrin, DDT (and its breakdown products) and/or heptachlor epoxide were detected in 59% of dugong blubber samples. In general, concentrations of organochlorines were similar to those reported in dugong 20 years earlier, and were low in comparison to concentrations recorded from marine mammal tissue collected elsewhere in the world. With the exception of lead, the extent of carcass decomposition, the presence of disease or evidence of animal starvation prior to death did not significantly affect dugong tissue concentrations of metals or organochlorines. The results of the study suggest that bioaccumulation of metals and organochlorine compounds (other than dioxins) does not represent a significant risk to Great Barrier Reef dugong populations, particularly in the context of other pressures associated with coastal development and other anthropogenic activities. (c) 2004 Elsevier Ltd. All rights reserved.