914 resultados para dimensional analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contributed to: Fusion of Cultures. XXXVIII Annual Conference on Computer Applications and Quantitative Methods in Archaeology – CAA2010 (Granada, Spain, Apr 6-9, 2010)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work shows the method developed to solve the wheel-rail contact problem via a look-up table with a three-dimensional elastic model. This method enables introduction of the two contact point effect on vehicle movement using three-dimensional analysis of surfaces including the influence of the angle of attack. This work presents several dynamic simulations and studies the impact that the introduction of the two contact points on three dimensions has on wear indexes and derailment risk against traditional bidimensional analysis. Furthermore, it studies advantages and disadvantages of using a look-up table against an on-line resolution of the problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the penetration process of ogive-nose projectiles into the semi-infinite concrete target is investigated by the dimensional analysis method and FEM simulation. With the dimensional analysis, main non-dimensional parameters which control the penetration depth are obtained with some reasonable hypothesis. Then, a new semi-empirical equation is present based on the original work of Forrestal et al., has only two non-dimensional combined variables with definite physical meanings. To verify this equation, prediction results are compared with experiments in a wide variation region of velocity. Then, a commercial FEM code, LS-DYNA, is used to simulate the complex penetration process, that also show the novel semi-empirical equation is reasonable for determining the penetration depth in a concrete target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contact pressure of porous Al2O3 probed by nanoindentation was investigated by dimensional analysis with special attention paid to scaling effects in the mechanical behavior. It was found that, for sample containing small grains and interconnected pores, the contact pressure is manifest dominated by bonding strength of the porous alumina. Whereas the samples with coarse grain and various porous structures exhibit higher contact pressures and smaller residual deformations, which can be attributed to the mechanical response of the solid-phase under current limited peak loads.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文以连续激光辐照下靶目标的变形与破坏等热力学响应特征为研究对象,采用了量纲分析、解析求解以及有限元方法等手段进行了较为系统的研究,得到了一些典型的靶结构变形与破坏的演化过程、主控参量和临界曲线。全文的工作主要包括,1.总结和评述了近四十年来国内外在此领域取得的重要进展,包括如下几方面:研究的背景和需求;不同激光参数下材料所表现出的破坏模态;激光辐照下靶目标温度场和变形场的实验和理论研究状况;热力耦合破坏机理的建立与应用等。并在此基础上,确定了本文的研究方向和路线。2.从π定理和基本控制方程入手,对连续激光在靶目标中引起的硬破坏效应进行了量纲分析,得以了8个具有明确物理背景的主控参量。这一工作有利于增强数值模拟工作的目的性,减少计算量。3.在不考虑材料参数温度依赖的前提下,利用热弹性板理论分析了承受横向载荷的薄板在激光辐照下的响应。通过特殊函数理论和级数解法的应用,得到了板中温度场和应力场的解析解。并将该解析解与数值解进行了对照和验证。4.利用ANSYS程序,数值模拟了平板和柱壳两种典型结构在连续激光辐照下的热力学响应。本工作的特色在于:一是在考虑了几何/材料非线性的条件下,利用3D实体单元,研究了机械载荷对激光诱导的变形和破坏过程的影响;二是首次获得了典型靶结构激光破坏的演化过程;三是在靶材料固定的前提下,得到了激光参数-载荷参数组成的临界破坏曲线。另外,我们在有限元分析模型的建立与单元网格的临界破坏曲线。另外,我们在有限元分析模型的建立与单元网格的划分上也进行了一些有益的探索和尝试。5.利用掌握的数值模拟方法,对含涂层结构的热冲击等问题进行了分析,为将来抗激光加固技术的数值研究奠定了一定的基础。最后,作者在总结全文内容的基础上,对相关领域中亟待发展和研究的课题进行了展望。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationships between indentation responses and Young's modulus of an indented material were investigated by employing dimensional analysis and finite element method. Three representative tip bluntness geometries were introduced to describe the shape of a real Berkovich indenter. It was demonstrated that for each of these bluntness geometries, a set of approximate indentation relationships correlating the ratio of nominal hardness/reduced Young's modulus H (n) /E (r) and the ratio of elastic work/total work W (e)/W can be derived. Consequently, a method for Young's modulus measurement combined with its accuracy estimation was established on basis of these relationships. The effectiveness of this approach was verified by performing nanoindentation tests on S45C carbon steel and 6061 aluminum alloy and microindentation tests on aluminum single crystal, GCr15 bearing steel and fused silica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the thermally induced cracking behavior of a segmented coating has been investigated. The geometry under consideration is a hollow cylinder with a segmented coating deposited onto its outer surface. The segmentation cracks are modeled as a periodic array of axial edge cracks. The finite element method is utilized to obtain the solution of the multiple crack problem and the Thermal Stress Intensity Factors (TSIFs) are calculated. Based on dimensional analysis, the main parameters affecting TSIFs are identified. It has been found that the TSIF is a monotonically increasing function of segmentation crack spacing. This result confirms that a segmented coating exhibits much higher thermal shock resistance than an intact counterpart, if only the segmentation crack spacing is narrow enough. The dependence of TSIF on some other parameters, such as normalized time, segmentation crack depth, convection severity as well as material constants, has also been discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

激光直接成形中,几何参数、材料属性和工艺参数等众多参量均会对残余应力造成影响,需要进行系统分析.采用量纲分析的方法,分别提取表征几何、传热和变形的3类关键无量纲参数,并结合三维瞬态有限元分析模型来研究这些无量纲参数对热致残余应力的影响规律.研究表明,选用热膨胀系数、屈服应力较小的材料,残余应力会较小;工艺控制中,可通过降低热散失,增大激光功率和提升预热温度来减小残余应力,其中预热的效果最好.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fluid diffusion in glassy polymers proceeds in ways that are not explained by the standard diffusion model. Although the reasons for the anomalous effects are not known, much of the observed behavior is attributed to the long times that polymers below their glass transition temperature take to adjust to changes in their condition. The slow internal relaxations of the polymer chains ensure that the material properties are history-dependent, and also allow both local inhomogeneities and differential swelling to occur. Two models are developed in this thesis with the intent of accounting for these effects in the diffusion process.

In Part I, a model is developed to account for both the history dependence of the glassy polymer, and the dual sorption which occurs when gas molecules are immobilized by the local heterogeneities. A preliminary study of a special case of this model is conducted, showing the existence of travelling wave solutions and using perturbation techniques to investigate the effect of generalized diffusion mechanisms on their form. An integral averaging method is used to estimate the penetrant front position.

In Part II, a model is developed for particle diffusion along with displacements in isotropic viscoelastic materials. The nonlinear dependence of the materials on the fluid concentration is taken into account, while pure displacements are assumed to remain in the range of linear viscoelasticity. A fairly general model is obtained for three-dimensional irrotational movements, with the development of the model being based on the assumptions of irreversible thermodynamics. With the help of some dimensional analysis, this model is simplified to a version which is proposed to be studied for Case II behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypervelocity impact of meteoroids and orbital debris poses a serious and growing threat to spacecraft. To study hypervelocity impact phenomena, a comprehensive ensemble of real-time concurrently operated diagnostics has been developed and implemented in the Small Particle Hypervelocity Impact Range (SPHIR) facility. This suite of simultaneously operated instrumentation provides multiple complementary measurements that facilitate the characterization of many impact phenomena in a single experiment. The investigation of hypervelocity impact phenomena described in this work focuses on normal impacts of 1.8 mm nylon 6/6 cylinder projectiles and variable thickness aluminum targets. The SPHIR facility two-stage light-gas gun is capable of routinely launching 5.5 mg nylon impactors to speeds of 5 to 7 km/s. Refinement of legacy SPHIR operation procedures and the investigation of first-stage pressure have improved the velocity performance of the facility, resulting in an increase in average impact velocity of at least 0.57 km/s. Results for the perforation area indicate the considered range of target thicknesses represent multiple regimes describing the non-monotonic scaling of target perforation with decreasing target thickness. The laser side-lighting (LSL) system has been developed to provide ultra-high-speed shadowgraph images of the impact event. This novel optical technique is demonstrated to characterize the propagation velocity and two-dimensional optical density of impact-generated debris clouds. Additionally, a debris capture system is located behind the target during every experiment to provide complementary information regarding the trajectory distribution and penetration depth of individual debris particles. The utilization of a coherent, collimated illumination source in the LSL system facilitates the simultaneous measurement of impact phenomena with near-IR and UV-vis spectrograph systems. Comparison of LSL images to concurrent IR results indicates two distinctly different phenomena. A high-speed, pressure-dependent IR-emitting cloud is observed in experiments to expand at velocities much higher than the debris and ejecta phenomena observed using the LSL system. In double-plate target configurations, this phenomena is observed to interact with the rear-wall several micro-seconds before the subsequent arrival of the debris cloud. Additionally, dimensional analysis presented by Whitham for blast waves is shown to describe the pressure-dependent radial expansion of the observed IR-emitting phenomena. Although this work focuses on a single hypervelocity impact configuration, the diagnostic capabilities and techniques described can be used with a wide variety of impactors, materials, and geometries to investigate any number of engineering and scientific problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates lateral mixing of tracer fluids in turbulent open-channel flows when the tracer and ambient fluids have different densities. Longitudinal dispersion in flows with longitudinal density gradients is investigated also.

Lateral mixing was studied in a laboratory flume by introducing fluid tracers at the ambient flow velocity continuously and uniformly across a fraction of the flume width and over the entire depth of the ambient flow. Fluid samples were taken to obtain concentration distributions in cross-sections at various distances, x, downstream from the tracer source. The data were used to calculate variances of the lateral distributions of the depth-averaged concentration. When there was a difference in density between the tracer and the ambient fluids, lateral mixing close to the source was enhanced by density-induced secondary flows; however, far downstream where the density gradients were small, lateral mixing rates were independent of the initial density difference. A dimensional analysis of the problem and the data show that the normalized variance is a function of only three dimensionless numbers, which represent: (1) the x-coordinate, (2) the source width, and (3) the buoyancy flux from the source.

A simplified set of equations of motion for a fluid with a horizontal density gradient was integrated to give an expression for the density-induced velocity distribution. The dispersion coefficient due to this velocity distribution was also obtained. Using this dispersion coefficient in an analysis for predicting lateral mixing rates in the experiments of this investigation gave only qualitative agreement with the data. However, predicted longitudinal salinity distributions in an idealized laboratory estuary agree well with published data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was made of the means by which turbulent flows entrain sediment grains from alluvial stream beds. Entrainment was considered to include both the initiation of sediment motion and the suspension of grains by the flow. Observations of grain motion induced by turbulent flows led to the formulation of an entrainment hypothesis. It was based on the concept of turbulent eddies disrupting the viscous sublayer and impinging directly onto the grain surface. It is suggested that entrainment results from the interaction between fluid elements within an eddy and the sediment grains.

A pulsating jet was used to simulate the flow conditions in a turbulent boundary layer. Evidence is presented to establish the validity of this representation. Experiments were made to determine the dependence of jet strength, defined below, upon sediment and fluid properties. For a given sediment and fluid, and fixed jet geometry there were two critical values of jet strength: one at which grains started to roll across the bed, and one at which grains were projected up from the bed. The jet strength K, is a function of the pulse frequency, ω, and the pulse amplitude, A, defined by

K = Aω-s

Where s is the slope of a plot of log A against log ω. Pulse amplitude is equal to the volume of fluid ejected at each pulse divided by the cross sectional area of the jet tube.

Dimensional analysis was used to determine the parameters by which the data from the experiments could be correlated. Based on this, a method was devised for computing the pulse amplitude and frequency necessary either to move or project grains from the bed for any specified fluid and sediment combination.

Experiments made in a laboratory flume with a turbulent flow over a sediment bed are described. Dye injection was used to show the presence, in a turbulent boundary layer, of two important aspects of the pulsating jet model and the impinging eddy hypothesis. These were the intermittent nature of the sublayer and the presence of velocities with vertical components adjacent to the sediment bed.

A discussion of flow conditions, and the resultant grain motion, that occurred over sediment beds of different form is given. The observed effects of the sediment and fluid interaction are explained, in each case, in terms of the entrainment hypothesis.

The study does not suggest that the proposed entrainment mechanism is the only one by which grains can be entrained. However, in the writer’s opinion, the evidence presented strongly suggests that the impingement of turbulent eddies onto a sediment bed plays a dominant role in the process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho a ser desenvolvido tem como objetivo compreender a relação complexa da política pública para a educação superior, entre 1995 e 2010, utilizando arcabouço teórico do neo-institucionalismo. Por meio da análise tridimensional da política (polity, politics e policy), a pesquisa procurará construir o ambiente multifacetado do processo de gestão da política pública, que teve início na constituição da agenda pública e perpassa a formulação e a implementação da política educacional nos governos dos presidentes Fernando Henrique Cardoso (1995 a 2002) e Luis Inácio Lula da Silva (2003 a 2010). O fio condutor é a dinâmica da Arena Decisória de Educação Superior, na qual a política pública gestada pelo Ministério da Educação (MEC) influenciou e foi influenciada pelo conjunto de atores governamentais e sociais. A política pública foi entendida como um conjunto sistêmico interdependente de Sete Pilares, a saber: autonomia, centralização do poder decisório, avaliação, formação de professores, flexibilização curricular, expansão e financiamento, que contribuíram para intervenção do Poder Público em prol da expansão da educação superior. Levando-se em conta as especificidades de cada momento histórico, o trabalho pretende construir um ambiente socioeconômico e as limitações fiscais, a fim de estabelecer uma análise comparativa entre as duas presidências.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Model tests for global design verification of deepwater floating structures cannot be made at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation techniques. In such a method the upper sections of each line are modelled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model, that aims to simulate the remainder of the line. The rationale for this is that in deep water the transverse elastic waves of a line are likely to decay before they are reflected at the seabed. The focus of this paper is the verification of this rationale and the ongoing work, which is considering ways to produce a truncation model. Transverse dynamics of a mooring line are modelled using the equations of motion of an inextensible taut string, submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. Nonlinear hydrodynamic damping is included; bending and VIV effects are neglected. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it is very useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. Initial efforts in developing a truncated model show that a linearized numerical solution in the frequency domain matches very closely the exact benchmark. Copyright © 2011 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bio-inspired designs can provide an answer to engineering problems such as swimming strategies at the micron or nano-scale. Scientists are now designing artificial micro-swimmers that can mimic flagella-powered swimming of micro-organisms. In an application such as lab-on-a-chip in which micro-object manipulation in small flow geometries could be achieved by micro-swimmers, control of the swimming direction becomes an important aspect for retrieval and control of the micro-swimmer. A bio-inspired approach for swimming direction reversal (a flagellum bearing mastigonemes) can be used to design such a system and is being explored in the present work. We analyze the system using a computational framework in which the equations of solid mechanics and fluid dynamics are solved simultaneously. The fluid dynamics of Stokes flow is represented by a 2D Stokeslets approach while the solid mechanics behavior is realized using Euler-Bernoulli beam elements. The working principle of a flagellum bearing mastigonemes can be broken up into two parts: (1) the contribution of the base flagellum and (2) the contribution of mastigonemes, which act like cilia. These contributions are counteractive, and the net motion (velocity and direction) is a superposition of the two. In the present work, we also perform a dimensional analysis to understand the underlying physics associated with the system parameters such as the height of the mastigonemes, the number of mastigonemes, the flagellar wave length and amplitude, the flagellum length, and mastigonemes rigidity. Our results provide fundamental physical insight on the swimming of a flagellum with mastigonemes, and it provides guidelines for the design of artificial flagellar systems.