928 resultados para differentially expressed genes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton. Results: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation. Conclusions: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Androgen receptor (AR) expression profile in the different Gleason patterns (GP) of primary prostate cancers and nodal metastases is unknown. More information about AR distribution is needed to optimize evaluation methods and to better understand the role of AR in development and progression of prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metzincins and functionally related genes play important roles in extracellular matrix remodeling both in healthy and fibrotic conditions. We recently presented a transcriptomic classifier consisting of 19 metzincins and related genes (MARGS) discriminating biopsies from renal transplant patients with or without interstitial fibrosis/tubular atrophy (IF/TA) by virtue of gene expression measurement (Roedder et al., Am J Transplant 9:517-526, 2009). Here we demonstrate that the same algorithm has diagnostic value in non-transplant solid organ fibrosis. We used publically available microarray datasets of 325 human heart, liver, lung, kidney cortex, and pancreas microarray samples (265 with fibrosis, 60 healthy controls). Expression of nine commonly differentially expressed genes was confirmed by TaqMan low-density arrays (Applied Biosystems, USA) in 50 independent archival tissue specimens with matched histological diagnoses to microarray patients. In separate and in combined, integrated microarray data analyses of five datasets with 325 samples, the previously published MARGS classifier for renal post-transplant IF/TA had a mean AUC of 87% and 82%, respectively. These data demonstrate that the MARGS gene panel classifier not only discriminates IF/TA from normal renal transplant tissue, but also classifies solid organ fibrotic conditions of human pancreas, liver, heart, kidney, and lung tissue samples with high specificity and accuracy, suggesting that the MARGS classifier is a cross-platform, cross-organ classifier of fibrotic conditions of different etiologies when compared to normal tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION The ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG1 are highly expressed in the placenta in various compartments, including the villous syncytiotrophoblast (V-STB) and foetal endothelial cells. Among other not yet characterized functions, they play a role in the foeto-maternal transport of cholesterol and other lipophilic molecules. In humans, preliminary data suggest expressional changes of ABCA1 and ABCG1 in pathologic gestation, particularly under hypoxic conditions, but a systematic expression analysis in common human pregnancy diseases has never been performed. OBJECTIVES The aim of the present study was to characterize ABCA1 and ABCG1 expression in a large series of pathologic placentas, in particular from preeclampsia (PE) and intrauterine growth restriction (IUGR) which are associated with placental hypoxia. METHODS Placentas from 152 pathological pregnancies, including PE and/or HELLP (n=24) and IUGR (n=21), and 20 normal control placentas were assessed for their ABCA1 and ABCG1 mRNA and protein expression with quantitative RT-PCR and semi-quantitative immunohistochemical analysis, respectively. RESULTS ABCA1 protein expression in the V-STB was significantly less extensive in PE compared with normal controls (<10% of V-STB stained for ABCA1 in 58% PE placentas vs. 25% controls; p=0.035). Conversely, it was significantly more wide-spread in IUGR (>75% of V-STB stained in 57% IUGR placentas vs. 15% controls; p=0.009). Moreover, there was an insignificant trend for increased ABCA1 expression in fetal endothelial cells of stem villi in PE (p=0.0588). ABCA1 staining levels in V-STB were significantly associated with placental histopathological features related with hypoxia: they were decreased in placentas exhibiting syncytial knotting (p=0.033) and decidual vasculopathy (p=0.0437) and increased in low weight placentas (p=0.015). The significant and specific alterations in ABCA1 protein expression found at a specific cellular level were not paralleled by changes in ABCA1 mRNA abundance of total placental tissue. ABCG1 staining was universally extensive in the V-STB of normal placentas, always affecting more than 90% of V-STB surface. In comparison, ABCG1 staining of the V-STB was generally often reduced in pregnancy diseases. In particular, less than 90% of V-STB exhibited ABCG1 staining in 26% of PE placentas (p=0.022) and 35% of IUGR placentas (p=0.003). Similarly to ABCA1, ABCG1 mRNA expression in total placental tissue was not significantly different between controls and PE or IUGR. CONCLUSION ABCA1 and ABCG1 proteins are differentially expressed, with either down- or up-regulation, in the V-STB of placentas exhibiting features of chronic hypoxia, such as in PE and IUGR. This suggests that other factors in addition to hypoxia regulate the expression of placental lipid transporters. The specific changes on a cellular level were masked when only total tissue mRNA was analysed underlining the importance of cell specific expression analysis. The potential effects of decreased placental ABCA1 and ABCG1 expression on foetal nutrition and development remain to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen and water are essential for plant growth and development. In this study, we designed experiments to produce gene expression data of poplar roots under nitrogen starvation and water deprivation conditions. We found low concentration of nitrogen led first to increased root elongation followed by lateral root proliferation and eventually increased root biomass. To identify genes regulating root growth and development under nitrogen starvation and water deprivation, we designed a series of data analysis procedures, through which, we have successfully identified biologically important genes. Differentially Expressed Genes (DEGs) analysis identified the genes that are differentially expressed under nitrogen starvation or drought. Protein domain enrichment analysis identified enriched themes (in same domains) that are highly interactive during the treatment. Gene Ontology (GO) enrichment analysis allowed us to identify biological process changed during nitrogen starvation. Based on the above analyses, we examined the local Gene Regulatory Network (GRN) and identified a number of transcription factors. After testing, one of them is a high hierarchically ranked transcription factor that affects root growth under nitrogen starvation. It is very tedious and time-consuming to analyze gene expression data. To avoid doing analysis manually, we attempt to automate a computational pipeline that now can be used for identification of DEGs and protein domain analysis in a single run. It is implemented in scripts of Perl and R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. RESULTS: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBFbeta, and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFbeta. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. CONCLUSION: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cathepsins are required for the processing of antigens in order to make them suitable for loading on major histocompatibility complex (MHC) class II molecules, for subsequent presentation to CD4(+) T cells. It was shown that antigen processing in monocyte-derived dendritic cells (DC), a commonly used DC model, is different from that of primary human DC. Here, we report that the two subsets of human myeloid DC (mDC) and plasmacytoid DC (pDC) differ in their cathepsin distribution. The serine protease cathepsin G (CatG) was detected in mDC1, mDC2, pDC, cortical thymic epithelial cells (cTEC) and high levels of CatG were determined in pDC. To address the role of CatG in the processing and presentation of a Multiple Sclerosis-associated autoantigen myelin basic protein (MBP), we used a non-CatG expressing fibroblast cell line and fibroblasts, which were preloaded with purified CatG. We find that preloading fibroblasts with CatG results in a decrease of MBP84-98-specific T cell proliferation, when compared to control cells. Our data suggest a different processing signature in primary human antigen-presenting cells and CatG may be of functional importance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymph nodes with Hodgkin disease (HD) harbor few neoplastic cells in a marked leukocytic infiltrate. Since chemokines are likely to be involved in the recruitment of these leukocytes, the expression of potentially relevant chemokines and chemokine receptors were studied in lymph nodes from 24 patients with HD and in 5 control lymph nodes. The expression of regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta was analyzed by in situ hybridization and that of CCR3 and CCR5 by immunohistochemistry and flow cytometry. It was found that, overall, the expression of all 4 chemokines was markedly enhanced, but the cellular source was different. RANTES was expressed almost exclusively by T cells whereas the expression of MCP-1, MIP-1alpha, and MIP-1beta was confined largely to macrophages. In control lymph nodes, chemokine expression was low, with the exception of MIP-1alpha in macrophages. CCR3 and CCR5 were highly expressed in T cells of HD involved but not of control lymph nodes. CCR3 was equally distributed in CD4+ and CD8+ cells, but CCR5 was associated largely with CD4+ cells. In HD lymph nodes, CCR3 and CCR5 were also expressed in B cells, which normally do not express these receptors. All these chemokines and receptors studied, by contrast, were absent in the neoplastic cells. It was concluded that chemokines are involved in the formation of the HD nonneoplastic leukocytic infiltrate. Expression of CCR3 and CCR5 appears to be characteristic of HD, but the roles of these receptors' up-regulation for the disease process remain unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In search of transmittable epigenetic marks we investigated gene expression in testes and sperm cells of differentially fed F0 boars from a three generation pig feeding experiment that showed phenotypic differences in the F2 generation. RNA samples from 8 testes of boars that received either a diet enriched in methylating micronutrients or a control diet were analyzed by microarray analysis. We found moderate differential expression between testes of differentially fed boars with a high FDR of 0.82 indicating that most of the differentially expressed genes were false positives. Nevertheless, we performed a pathway analysis and found disparate pathway maps of development_A2B receptor: action via G-protein alpha s, cell adhesion_Tight junctions and cell adhesion_Endothelial cell contacts by junctional mechanisms which show inconclusive relation to epigenetic inheritance. Four RNA samples from sperm cells of these differentially fed boars were analyzed by RNA-Seq methodology. We found no differential gene expression in sperm cells of the two groups (adjusted P-value>0.05). Nevertheless, we also explored gene expression in sperm by a pathway analysis showing that genes were enriched for the pathway maps of bacterial infections in cystic fibrosis (CF) airways, glycolysis and gluconeogenesis p.3 and cell cycle_Initiation of mitosis. Again, these pathway maps are miscellaneous without an obvious relationship to epigenetic inheritance. It is concluded that the methylating micronutrients moderately if at all affects RNA expression in testes of differentially fed boars. Furthermore, gene expression in sperm cells is not significantly affected by extensive supplementation of methylating micronutrients and thus RNA molecules could not be established as the epigenetic mark in this feeding experiment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies of differential gene-expressions have been conducted between two given conditions. The two-condition experimental (TCE) approach is simple in that all genes detected display a common differential expression pattern responsive to a common two-condition difference. Therefore, the genes that are differentially expressed under the other conditions other than the given two conditions are undetectable with the TCE approach. In order to address the problem, we propose a new approach called multiple-condition experiment (MCE) without replication and develop corresponding statistical methods including inference of pairs of conditions for genes, new t-statistics, and a generalized multiple-testing method for any multiple-testing procedure via a control parameter C. We applied these statistical methods to analyze our real MCE data from breast cancer cell lines and found that 85 percent of gene-expression variations were caused by genotypic effects and genotype-ANAX1 overexpression interactions, which agrees well with our expected results. We also applied our methods to the adenoma dataset of Notterman et al. and identified 93 differentially expressed genes that could not be found in TCE. The MCE approach is a conceptual breakthrough in many aspects: (a) many conditions of interests can be conducted simultaneously; (b) study of association between differential expressions of genes and conditions becomes easy; (c) it can provide more precise information for molecular classification and diagnosis of tumors; (d) it can save lot of experimental resources and time for investigators.^