905 resultados para differential scanning calorimetry (DSC) kinetics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method was adopted to fix a series of polymers of PE-b-PEO with different PEO/PE segments on the chains of LLDPE. Maleic anhydride (MA) reacting with hydroxyl group of PE-b-PEO (mPE-b-PEO) was used as the intermediate. The structures of intermediates and graft copolymers were approved by H-1 NMR and FTIR. XPS analysis revealed a great amount of oxygen on the surface of grafted copolymers although the end group of PEO was fixed on the LLDPE chains through MA. Thermal properties of the graft copolymers as determined by differential scanning calorimetry (DSC) showed that PE segments in the grafted monomers could promote the heterogeneous nucleation of the polymer, increase T., and crystal growth rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonisothermal and isothermal crystallization kinetics of an aromatic thermoplastic polyimide derived from 3,3',4,4'-oxydiphthalic dianhydride and 4,4'-oxydianiline have been investigated by means of differential scanning calorimetry (DSC) and wide-angle X-ray diffraction. The results for nonisothermal crystallization study showed that a weak melting peak appeared during the first heating process, whereas no crystallization peak appeared in the DSC curve during the subsequent cooling process. On the other hand, the study for the isothermal crystallization in the temperature range of 260-330 degrees C showed that a new exothermic peak appeared at lower temperature for the samples crystallized for 100 min at 300 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystalline modifications alpha and beta of polypropylene (PP) were studied by using polarized light microscopy (PLM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Typically beta crystals surrounded by alpha spherulites were observed at low temperature. With increasing temperature the beta crystals melted and a new crystal appeared. More interestingly, the melting temperature of the new crystal was about 5degrees higher than that of alpha spherulites originally present in the sample formed isothermally. It was assumed that this new crystal was the recrystalline alpha crystal. This assumption was supported by the DSC results. Furthermore, the crystallization kinetics of the PP used was studied on the basis of the traditional Avrami analysis. As a result, the Avrami exponents of crystallization temperature from 120 to 130degreesC ranged between 4.21 and 3.60, indicating that the crystallization mechanism of PP order melt was spherulitic growth and random nucleation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noncrosslinking linear low-density polyethylene-grafted acrylic acid (LLDPE-g-AA) was prepared by melt-reactive extrusion in our laboratory. The thermal behavior of LLDPE-g-AA was investigated by using differential scanning calorimetry (DSC). Compared with neat linear low-density polyethylene (LLDPE), melting temperature (T-m) of LLDPE-g-AA increased a little, the crystallization temperature (T-c) increased about 4degreesC, and the melting enthalpy (DeltaH(m) ) decreased with an increase in acrylic acid content. Isothermal crystallization kinetics of LLDPE and LLDPE-g-AA samples were carried out by using DSC. The overall crystallization rate of LLDPE was smaller than that of grafted samples. It showed that the grafted acrylic acid monomer onto LLDPE acted as a nucleating agent. Crystal morphologies of LLDPE-g-AA and LLDPE were examined by using SEM. Spherulite sizes of LLDPE-g-AA samples were lower than that of LLDPE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of neat PPS and PPS in blends with PMR-POI prepared by melt mixing were investigated by differential scanning calorimetry (DSC). It was found that POI was an effective nucleation agent of the crystallization for PPS. The enthalpy of crystallization of PPS in the blends increased compared with that of neat PPS. During isothermal crystallization from melt, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of POI causes an increase in the overall crystallization rate of PPS; it also changed the mechanism of nucleation of the PHB crystals from homogeneous nucleation to heterogeneous nucleation. The equilibrium melting temperature of PPS and PPS/POI blends were determined. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PPS in the composite is due to the decrease in surface energy of the extremity surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

poly(epsilon-caprolactone) (PCL) and silica (SiO2) organic-inorganic hybrid materials have been synthesized by sol-gel approach and the crystalline behavior of PCL in the silica networks has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The degree of PCL crystallinity in the PCL/SiO2 hybrid networks reduces with the increase of SiO2 content. PCL is in an amorphous state when the concentration of PCL is lower than 40wt% in the hybrid materials. The melting points of PCL in the networks are lower than that of pure PCL,but they almost have a same value. WAXD results show that when the PCL weight percentage is higher than 40wt% in the hybrid samples,part of PCL can crysatllize and the PCL crystallites are almost in a same size. That means the crystalline movement of PCL molecular chains is strictly confined by the porous gel. The crystalline PCL in the hybrid samples is relatively free from the composition of the materials, because the crystallization temperature and melting point of PCL of the samples are almost equal,and the crystalline PCL of different samples has the same crystalline structure and the same crystallite sizes L-110 and L-200, that means the crystalline part of PCL in the hybrid samples is unperturbed and the porous silica gel gives enough space for PCL to crystallize into the same crystalline structure and the same size crystallites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonisothermal and isothermal melt crystallization kinetics of a novel aryl ether ketone polymer containing meta-phenylene linkages, PEKEKK (T/I), were studied by differential scanning calorimetry (DSC). The Avrami equation modified by Jeziorny and a new approach by combining the Avrami equation with the Ozawa equation could describe the nonisothermal crystallization. Isothermal crystallization could also be described by the Avrami equation. The activation energies were 187 and 159 kJ/mol for nonisothermal and isothermal crystallization, respectively. Using the Hoffman-Weeks method, the equilibrium melting point T-m(o) was estimated as 353 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter K-g of the isothermal melt crystallization was estimated as 5.49 x 10(5) K-2. The crystallization characteristics of PEKEKK (T/I) were compared with those of all-para PEKEKK. The differences were explained by differences in the chain flexibility of the two polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT) are chosen to investigate the nonisothermal crystallization behavior by using differential scanning calorimetry (DSC). When Jeziorny method is applied, the deviation from the line appears at the later stage of crystallization for both P3DDT and P3ODT. The Ozawa equation fails to describe the nonisothermal crystallization of P3DDT, but succeeds for P3ODT. However, a new method proposed by our laboratory has been proven to be convenient and applicable for both of the two polymers. The values of the crystallization activation energy of P3DDT and P3ODT are estimated as 184.79 and 246.93 kJ/mol, respectively, in light of the Kissinger method. (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 similar to 1.2, probably reflecting one-dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and nonisothermal crystallizations of nylon 66. In the isothermal crystallization process, mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determined from the Lauritzen-Hoffman treatment are sigma = 9.77 erg/cm(2) and sigma (e) = 155.48 erg/cm(2), respectively; and the work of chain folding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo method combined with the Avrami and Ozawa equations. The average Avrami exponent (n) over bar was determined to be 3.45. The activation energies (DeltaE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal and nonisothermal crystallization processes by the Arrhenius and the Kissinger methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystallization behavior of poly (3-dodecylthiophene) (P3DDT) is studied bq differential scanning calorimetry (DSC) under different cooling rates. When the methods of Jeziorny., Ozawa and a new one proposed by our laboratory are applied to describe its nonisothermal crystallization behavior, the new one is confirmed to be the best and convenient. By determining kinetic parameters, the analysis of the nonisothermal crystallization behavior is performed. According to Kissinger method, the crystallization activation energy of P3DDT is also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonisothermal melt crystallization kinetics of PEDEKmK linked by meta-phenyl and biphenyl was investigated by differential scanning calorimetry (DSC). A convenient and reasonable kinetic approach was used to describe the nonisothermal melt crystallization behavior, and its applicability was verified when the modified Avrami analysis by the Jeziorny and Ozawa equation were applied to the crystallization process. The crystallization activation energy was estimated to be -219 kJ/mol by Kissinger method while crystallizing from the PEDEKmK melt nonisothermally. These observed crystallization characteristics were compared to those of the other members of poly(aryl ether ketone) family. (C) 1998 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal properties of ethylene propylene copolymer-grafted-acrylic acid (EP-g-AA) were investigated by using differential scanning calorimetry (DSC). Compared with the ethylene propylene copolymer (EP), the peak values of the melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, the crystallization temperature (T-c) increased about 8-12 degrees C, and the melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of the ungrafted sample was 1.6-1.8, and that of grafted samples were all above 2, which indicated that the grafted monomer could become the crystal nuclei for the crystallization of propylene sequence. With increasing grafted monomer content, the crystallization rate of propylene sequence in grafted EP increased; it might be the result of rapid nucleation rate and crystal growth rate.