978 resultados para derivative free optimization
Resumo:
Genetic algorithms (GAs) have been used to tackle non-linear multi-objective optimization (MOO) problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the numbers of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimizing GA (MOGA) that uses self-adaptive mutation and crossover, and which is applied to optimization of an airfoil, for minimization of drag and maximization of lift coefficients. The MOGA is integrated with a Free-Form Deformation tool to manage the section geometry, and XFoil which evaluates each airfoil in terms of its aerodynamic efficiency. The performance is compared with those of the heuristic MOO algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this GA achieves better convergence.
Resumo:
In this paper we study the optimization of interleaved Mach-Zehnder silicon carrier depletion electro-optic modulator. Following the simulation results we demonstrate a phase shifter with the lowest figure of merit (modulation efficiency multiplied by the loss per unit length) 6.7 V-dB. This result was achieved by reducing the junction width to 200 nm along the phase-shifter and optimizing the doping levels of the PN junction for operation in nearly fully depleted mode. The demonstrated low FOM is the result of both low V(π)L of ~0.78 Vcm (at reverse bias of 1V), and low free carrier loss (~6.6 dB/cm for zero bias). Our simulation results indicate that additional improvement in performance may be achieved by further reducing the junction width followed by increasing the doping levels.
Resumo:
Coupling coefficient is an important parameter for distributed feedback lasers. Modified coupled-wave equations are used to calculate the effect of grating shape on coupling coefficient of the second-order gratings. Corresponding devices demonstrate that the maximum kink-free power per facet reaches 50 mW and the sidemode suppression ratio is 36 dB.
Resumo:
As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 degrees C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with fluorescence detection has been developed. 9-(2-Hydroxyethyl)acridone reacts with coupling agent N,N-carbonyldiimidazole at ambient temperature to form activated amide intermediate 9-(2-acridone)oxyethylcarbonylimidazole (AOCD). The amide intermediate (AOCD) preferably reacts with amino compounds under mild reactions in the presence of 4-(dimethylamino)pyridine (base catalyst) in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum lambda(ex) 404 mn and an emission maximum at lambda(em) 440 nm. The labeled derivatives exhibit high stability under reversed-phase conditions. The fluorescence intensities of derivatives in various solvents or at different temperatures were investigated. The method, in conjunction with a gradient elution, offers a baseline resolution of the common amine derivatives on a reversed-phase C-18 column. The LC separation for the derivatized amines shows good reproducibility with acetonitrile-water including 2.5% DMF as mobile phase. The relative standard deviations (n = 6) for each amine derivative are <4.5%. The detection limits (at a signal-to-noise ratio of 3) per injection were 0.16-12.8 ng/mL. Further research for the field of application, based on the AOCD amide intermediate as derivatization reagent, for the determination of free amines in real water samples is achieved.
Resumo:
The title compound 1-(4,5-dihydro-3-phenylpyridine-1-yl)-2-(1H-1,2,4-triazole-1-yl)ethyl ketone (DTE) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid solutions was investigated by means of weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electronic microscope (SEM). Results obtained revealed that DIE performed excellently as a corrosion inhibitor for mild steel in 1 M hydrochloric acid media and its efficiency attains more than 90.9% at 1.0 x 10(-3) M at 298 K. Polarization curves indicated that the inhibitor behave mainly as mixed-type inhibitor. EIS showed that the charge transfer controls the corrosion process in the uninhibited and inhibited solutions. Adsorption of the inhibitor on the mild steel surface followed Langmuir adsorption isotherm. And the values of the free energy of adsorption Delta G(ads) indicated that the adsorption of DTE molecule was a spontaneous process and was typical of chemisorption. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound, however, it is highly hydrophobic and toxic. In order to improve its activity and reduce its toxicity, new surfactant-free biologically active nanoparticles (NP) were synthesized. A methacrylic derivative of α-TOS (MTOS) was prepared and incorporated in amphiphilic pseudoblock copolymers when copolymerized with N-vinylpyrrolidone (VP) by free radical polymerization (poly(VP-co-MTOS)). The selected poly(VP-co-MTOS) copolymers formed surfactant-free NP by nanoprecipitation with sizes between 96 and 220 nm and narrow size distribution, and the in vitro biological activity was tested. In order to understand the structure-activity relationship three other methacrylic monomers were synthesized and characterized: MVE did not have the succinate group, SPHY did not have the chromanol ring, and MPHY did not have both the succinate group and the chromanol ring.
Resumo:
Similarly to protein folding, the association of two proteins is driven by a free energy funnel, determined by favorable interactions in some neighborhood of the native state. We describe a docking method based on stochastic global minimization of funnel-shaped energy functions in the space of rigid body motions (SE(3)) while accounting for flexibility of the interface side chains. The method, called semi-definite programming-based underestimation (SDU), employs a general quadratic function to underestimate a set of local energy minima and uses the resulting underestimator to bias further sampling. While SDU effectively minimizes functions with funnel-shaped basins, its application to docking in the rotational and translational space SE(3) is not straightforward due to the geometry of that space. We introduce a strategy that uses separate independent variables for side-chain optimization, center-to-center distance of the two proteins, and five angular descriptors of the relative orientations of the molecules. The removal of the center-to-center distance turns out to vastly improve the efficiency of the search, because the five-dimensional space now exhibits a well-behaved energy surface suitable for underestimation. This algorithm explores the free energy surface spanned by encounter complexes that correspond to local free energy minima and shows similarity to the model of macromolecular association that proceeds through a series of collisions. Results for standard protein docking benchmarks establish that in this space the free energy landscape is a funnel in a reasonably broad neighborhood of the native state and that the SDU strategy can generate docking predictions with less than 5 � ligand interface Ca root-mean-square deviation while achieving an approximately 20-fold efficiency gain compared to Monte Carlo methods.
Resumo:
This paper presents an analysis of biofluid behavior in a T-shaped microchannel device and a design optimization for improved biofluid performance in terms of particle liquid separation. The biofluid is modeled with single phase shear rate non-Newtonian flow with blood property. The separation of red blood cell from plasma is evident based on biofluid distribution in the microchannels against various relevant effects and findings, including Zweifach-Fung bifurcation law, Fahraeus effect, Fahraeus-Lindqvist effect and cell free phenomenon. The modeling with the initial device shows that this T-microchannel device can separate red blood cell from plasma but the separation efficiency among different bifurcations varies largely. In accordance with the imbalanced performance, a design optimization is conducted. This includes implementing a series of simulations to investigate the effect of the lengths of the main and branch channels to biofluid behavior and searching an improved design with optimal separation performance. It is found that changing relative lengths of branch channels is effective to both uniformity of flow rate ratio among bifurcations and reduction of difference of the flow velocities between the branch channels, whereas extending the length of the main channel from bifurcation region is only effective for uniformity of flow rate ratio.
Resumo:
Shape memory alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics, and so on. Although the number of applications is increasing, there has been limited success in precise motion control owing to the hysteresis effect of these smart actuators. The present paper proposes an optimization of the proportional-integral-derivative (PID) control method for SMA actuators by using genetic algorithm and the Preisach hysteresis model.
Resumo:
A conceptual model is described for generating distributions of grazing animals, according to their searching behavior, to investigate the mechanisms animals may use to achieve their distributions. The model simulates behaviors ranging from random diffusion, through taxis and cognitively aided navigation (i.e., using memory), to the optimization extreme of the Ideal Free Distribution. These behaviors are generated from simulation of biased diffusion that operates at multiple scales simultaneously, formalizing ideas of multiple-scale foraging behavior. It uses probabilistic bias to represent decisions, allowing multiple search goals to be combined (e.g., foraging and social goals) and the representation of suboptimal behavior. By allowing bias to arise at multiple scales within the environment, each weighted relative to the others, the model can represent different scales of simultaneous decision-making and scale-dependent behavior. The model also allows different constraints to be applied to the animal's ability (e.g., applying food-patch accessibility and information limits). Simulations show that foraging-decision randomness and spatial scale of decision bias have potentially profound effects on both animal intake rate and the distribution of resources in the environment. Spatial variograms show that foraging strategies can differentially change the spatial pattern of resource abundance in the environment to one characteristic of the foraging strategy.</
Resumo:
Por parte da indústria de estampagem tem-se verificado um interesse crescente em simulações numéricas de processos de conformação de chapa, incluindo também métodos de engenharia inversa. Este facto ocorre principalmente porque as técnicas de tentativa-erro, muito usadas no passado, não são mais competitivas a nível económico. O uso de códigos de simulação é, atualmente, uma prática corrente em ambiente industrial, pois os resultados tipicamente obtidos através de códigos com base no Método dos Elementos Finitos (MEF) são bem aceites pelas comunidades industriais e científicas Na tentativa de obter campos de tensão e de deformação precisos, uma análise eficiente com o MEF necessita de dados de entrada corretos, como geometrias, malhas, leis de comportamento não-lineares, carregamentos, leis de atrito, etc.. Com o objetivo de ultrapassar estas dificuldades podem ser considerados os problemas inversos. No trabalho apresentado, os seguintes problemas inversos, em Mecânica computacional, são apresentados e analisados: (i) problemas de identificação de parâmetros, que se referem à determinação de parâmetros de entrada que serão posteriormente usados em modelos constitutivos nas simulações numéricas e (ii) problemas de definição geométrica inicial de chapas e ferramentas, nos quais o objetivo é determinar a forma inicial de uma chapa ou de uma ferramenta tendo em vista a obtenção de uma determinada geometria após um processo de conformação. São introduzidas e implementadas novas estratégias de otimização, as quais conduzem a parâmetros de modelos constitutivos mais precisos. O objetivo destas estratégias é tirar vantagem das potencialidades de cada algoritmo e melhorar a eficiência geral dos métodos clássicos de otimização, os quais são baseados em processos de apenas um estágio. Algoritmos determinísticos, algoritmos inspirados em processos evolucionários ou mesmo a combinação destes dois são usados nas estratégias propostas. Estratégias de cascata, paralelas e híbridas são apresentadas em detalhe, sendo que as estratégias híbridas consistem na combinação de estratégias em cascata e paralelas. São apresentados e analisados dois métodos distintos para a avaliação da função objetivo em processos de identificação de parâmetros. Os métodos considerados são uma análise com um ponto único ou uma análise com elementos finitos. A avaliação com base num único ponto caracteriza uma quantidade infinitesimal de material sujeito a uma determinada história de deformação. Por outro lado, na análise através de elementos finitos, o modelo constitutivo é implementado e considerado para cada ponto de integração. Problemas inversos são apresentados e descritos, como por exemplo, a definição geométrica de chapas e ferramentas. Considerando o caso da otimização da forma inicial de uma chapa metálica a definição da forma inicial de uma chapa para a conformação de um elemento de cárter é considerado como problema em estudo. Ainda neste âmbito, um estudo sobre a influência da definição geométrica inicial da chapa no processo de otimização é efetuado. Este estudo é realizado considerando a formulação de NURBS na definição da face superior da chapa metálica, face cuja geometria será alterada durante o processo de conformação plástica. No caso dos processos de otimização de ferramentas, um processo de forjamento a dois estágios é apresentado. Com o objetivo de obter um cilindro perfeito após o forjamento, dois métodos distintos são considerados. No primeiro, a forma inicial do cilindro é otimizada e no outro a forma da ferramenta do primeiro estágio de conformação é otimizada. Para parametrizar a superfície livre do cilindro são utilizados diferentes métodos. Para a definição da ferramenta são também utilizados diferentes parametrizações. As estratégias de otimização propostas neste trabalho resolvem eficientemente problemas de otimização para a indústria de conformação metálica.
Resumo:
The design of neuro-fuzzy models is still a complex problem, as it involves not only the determination of the model parameters, but also its structure. Of special importance is the incorporation of a priori information in the design process. In this paper two known design algorithms for B-spline models will be updated to account for function and derivatives equality restrictions, which are important when the neural model is used for performing single or multi-objective optimization on-line.
Resumo:
Four ruthenium(II) complexes with the formula [Ru(eta(5)-C(5)H(5))(PP)L][CF(3)SO(3)], being (PP = two triphenylphosphine molecules), L = 1-benzylimidazole, 1; (PP = two triphenylphosphine molecules), L = 2,2'bipyridine, 2; (PP = two triphenylphosphine molecules), L = 4-Methylpyridine, 3; (PP = 1,2-bis(diphenylphosphine) ethane), L = 4-Methylpyridine, 4, were prepared, in view to evaluate their potentialities as antitumor agents. The compounds were completely characterized by NMR spectroscopy and their crystal and molecular structures were determined by X-ray diffraction. Electrochemical studies were carried out giving for all the compounds quasi-reversible processes. The images obtained by atomic force microscopy (AFM) suggest interaction with pBR322 plasmid DNA. Measurements of the viscosity of solutions of free DNA and DNA incubated with different concentrations of the compounds confirmed this interaction. The cytotoxicity of compounds 1234 was much higher than that of cisplatin against human leukemia cancer cells (HL-60 cells). IC(50) values for all the compounds are in the range of submicromolar amounts. Apoptotic death percentage was also studied resulting similar than that of cisplatin. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.