928 resultados para dentin bonding
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
O objetivo do presente estudo foi investigar a influência da pressão intrapulpar e da profundidade dentinária sobre o desempenho adesivo de dois agentes de união à dentina, Single Bond (3M ESPE, St. Paul, MN, EUA) e Clearfil SE Bond (Kuraray, Tokyo, Japão), aplicados in vitro e in vivo. Quarenta e oito prémolares superiores hígidos foram selecionados e os pares pertencentes aos mesmos pacientes foram aleatoriamente distribuídos em 4 grupos experimentais de acordo com o sistema adesivo e a pressão intrapulpar, presente ou ausente. Dos dentes pertencentes ao mesmo par, um foi tratado in vivo e o outro in vitro. A ausência ou presença de pressão intra-pulpar foi determinada in vivo pelo uso de anestésicos locais com ou sem vasoconstritor, respectivamente. In vitro, os dentes foram mantidos sob pressão hidrostática de 15 cm de água por 24 horas. Cavidades de classe I foram preparadas e os sistemas adesivos aplicados de acordo com a recomendação dos fabricantes, seguidos da restauração incremental em resina composta. Para os dentes tratados in vitro, os mesmos procedimentos restauradores foram realizados após 6 meses de armazenagem em solução contendo timol 0,1%. Espécimes com área de secção transversal de 1 mm2 foram obtidos e submetidos ao ensaio mecânico de microtração. In vivo, ambos os sistemas adesivos apresentaram desempenho adesivo comparável, enquanto in vitro, o sistema Single Bond foi superior ao sistema Clearfil SE Bond. Esse último não foi influenciado por nenhuma das variáveis estabelecidas no estudo, ou seja, aplicação in vitro ou in vitro, presença de pressão intrapulpar e profundidade em dentina. O sistema Single Bond aplicado sob pressão intrapulpar positiva sofreu variação significante de resistência de união em função da profundidade da dentina, ou seja, em dentina profunda seu desempenho adesivo... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.
Resumo:
To evaluate the effect of chlorhexidine (CHX) on the wettability of sound and caries affected dentin by a simplified adhesive system. Material and Methods: Flat coronal dentin surfaces were produced on 60 sound molars, 30 of which were artificially decayed. The teeth were divided randomly into 3 groups (n = 10) with smear layer (SL), without SL impregnated with water and without SL impregnated with chlorhexidine. The SL removal was performed by phosphoric acid etching for 15 s. 20 uL of distilled water or 2% chlorhexidine digluconate were applied on the demineralized dentin for 60 s. Then, a drop of Single Bond 2 was deposited on each surface. Contact angles between dentin surface and adhesive was measured by means of a goniometer and data were submitted to ANOVA and Tukey tests (α = 0.05). Results: Higher contact angles were obtained on sound versus caries affected dentin (p <0.05), regardeless of the surface treatment. For both substrates, contact angles statistically higher were obtained for dentin covered with SL (P <0.05). The SL removal resulted in significant reduction of the angles (P <0.05) and no difference was found among angles produced on demineralized dentin impregnated with water or chlorhexidine (p> 0.05). Conclusion: Caries affected dentin wettability was higher than sound dentin and that characteristic was not influenced by chlorhexidine application.
Resumo:
The purpose of this study was to use a fluorescent dye and CLSM microscope to observe the effect of different light intensities on dentin tensile bond strength. Flat dentin surfaces were created on 16 intact human third molars and divided in 4 groups: Group G1 - halogen - KM -200R®; Group G2 - LED - Ultraled®; Group G3 - LED - UltraLume LED5® and Group G4 - LED - Biolux Single V®. For all the groups, the restoration procedure used Single Bond® adhesive, mixed with rodamin B and InTen-S® composite resin. Then, they were cut on serial sections to obtain 1 mm2 area and submitted to micro tensile test and after words, the fractures were analyzed with a digital microscope and CLSM. The statistical analysis showed that all in all groups, except Group G2, which had a significant smaller tensile bond strength ratio. The fracture mode analysis showed that there were significant differences when comparing groups G1 / G2, and G2 / G4. There is no evidence of relevant differences among the other groups. With these results, we conclude that the use of fluorescent dye and CLSM demonstrated to be a simple and nondestructive technique, and that there are evidences that light intensities influenced the dentine tensile.
Resumo:
Recent bonding systems have been advocated as multi-purpose bonding agents. The aim of this study was to determine if some of these bonding systems could be associated to composite resins from different manufacturers. This investigation was conducted to test lhe shear bond strength of three bonding systems: Scotchbond Multi-Purpose (3M Dental Products), Optibond Light Cure (Kerr) and Optibond Dual Cure (Kerr), when each of them was associated to lhe composite resins: Z1 00 (3M Dental Products), Prisma - APH (Dentsply) and Herculite XRV (Kerr). Seventy-two flat dentin bonding sites were prepared to 600 grit on human premolars mounted using acrilic resins. The teeth were assigned at random to 9 groups of 8 samples each. A split die with a 3mm diameter was placed over lhe surface of lhe dentin treated with one of lhe adhesive systems, and lhe selected composite resin was inserted and light cured. The split mold was removed and all samples were termocycled and stored in 37ºC water for 24 hours before testing. Shear bond strength was determined using an lnstron Universal testing machine. Some failures were examined under lhe S.E.M. Data was analysed by one-way analysis of variance, that demonstrated a significant difference (p<0,05) in the mean shear bond strength among Optibond Light Cure (15,446 MPa), Scotchbond Multi-Purpose (13,339 MPa) and Optibond Dual Cure (10,019 MPa). These values did not depend on the composite resin used. The association between bonding system/composite resin was statistycally significant (p<0,05) and the best results were obtained when the composite resins Z100 and Herculite were used with the adhesive system Optibond Light Cure, and when the composite resin APH was used with the adhesive system Scotchbond Multi-Purpose
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
The purpose of this study was to evaluate the apical sealing ability and the marginal adaptation of five dental materials used in retrofillings or applied to the bevelled root surface. One hundred and forty extracted single rooted human teeth were used, divided into seven groups of twenty each. ln the first, second, third and fourth groups, the teeth were apicoectomized, submitted to cavity preparations and retrofilled with one of the following materiais: zinc free silver amalgam, a dentin bonding system plus composite resin, a glass ionomer cement ora compomer. In the fifth, sixth and seventh groups, the teeth were apicoectomized and capped on the bevelled root surface with one of the following materiais: a dentin bonding system plus composite resin, a glass ionomer cement or a compomer. Two specimens of each experimental group were evaluated for the marginal adaptation using scanning electron microscopy. The remaining 126 specimens were immersed in 2% methylene blue dye, stored for one week at 37ºC and the infiltration was evaluated with a stereomicroscope. The results showed that the glass ionomer cement presented the lowest values of marginal infiltration when used as retrofilling material, with a significant statistical difference when compared with the others tested materials. When used as apical capping, the glass ionomer cement and the compomer were equivalent and significantly better than the dentin bonding system plus composite resin. Using scanning electron microscopy, all the materials showed some slight adjustment problem. ln the retrofilling, the smallest marginal gaps were observed with the compomer and the dentin bonding system plus composite resin, while the largest were observed with the glass ionomer cement and zinc free silver amalgam. ln the apical capping, the smallest marginal gaps were observed with the compomer and the dentin bonding system plus composite resin and ...
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)