1000 resultados para delta 13C, carbon dioxide, aquatic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der Wassersäule der Laptew See haben die Bildungs- und Verteilungsbedingungen vielfliltige Ursachen. Für die südliche Lapt ew See konnte eine Methananomalie innerhalb des Lenaausstrorns nachgewiesen werden, die im direkten Zusammenhang mit dem Flußwasser stehen muß. Mit den hohen Konzentrationen am Kontinentalhang ergab sich ein Hinweis auf eventuell vorhandene Gashydrate an der Sole eines zum Hang hin auskeilenden Permafrosts oder auf Gashydrate in den Sedimenten des Kontinentalhangs selbst. Ob es entlang der reliktisch vorhandenen, ehemaligen Flußläufe auf dem Schel f ebenfalls zu Entgasungen kommt, bleibt allerdings weiter unklar, da dieses Phänomen nicht beobachtet wurde oder die Anomalien nicht eindeutig diesem Prozeß zuzuordnen waren. Sicherlich ist die COz-Reduktion im Sediment in der Laptew See eine Hauptquelle für marines, bodennahes Methan. Die Ergebnisse. zeigen, daß dieser Bildungsprozeß vor allem für die küstennahen Bereiche wahrscheinlich ist. Dennoch gibt es auch Bereiche, wo die Zuordnung zu einer expliziten Methanquelle nicht eindeutig ist. Für eine genauere Bewertung der Herkunft der Gase sollten in künftigen Untersuchungen die Methankonzentrationen des Sediments einbezogen werden. Aber auch die Isotopensignaturen des Gases im Sediment können wertvolle Hinweise auf die Genese geben, vor allem wenn die Wasserstoffisotopie mituntersucht wird. Dies erscheint sinnvoll, da sich dur ch leichtes, bodennahes, Methan in der Wassersäule Hinweise auf biogene Bildungen ergaben, dieser Befund könnte durch weitere Untersuchungen präzisiert werden. Dies gilt aber auch für die CH4-Anomalien des OberfIächenwassers. Auch hier ergaben sich durch leicht KohIenstoffsignaturen Hinweise auf biogene in situ-Produktion. Mit detaillierteren Methankonzentrations- und d13C- CH4-Isotopenprofilen der Wassersäule könnte dieser Bildungspfad eindeutiger beschrieben werden. Es konnte ferner gezeigt werden, daß die Lapt ew See während der Sommermonate eine Quelle für atmosphärisches CI L darstellt. Das emittierte Gas geht neben vereinzelten Bodenquellen auch auf in situ-Produktion in der Wassersäule zurück. Abgesehen von der nördlichen Region geht das Methan bodennaher Anomalien innerhalb der Wassersäule sehr schnell zurück und nur ein kleiner Teil gelangt so schließlich in die Atmosphäre. Der während der ARK-XIV Expedition getestete Methansensor hat sich als ungeeignet für den Einsatz gemeinsam mit der CTD erwiesen. Es hat sich gezeigt, daß der Sensor unter diesen Bedingungen nicht genügend Zeit hat, um sein Meßsignal zu stabilisieren. Möglicherweise kann er aber in modifizierter For m und mit einer Kalibration für niedrigere Konzentrationsbereiche als stationäres Meßgerät eingesetzt werden. Für hohe CH4-Konzentrationen, wie man sie an Pockmarks antrifft, ist die Methansensormessung sicherlich auch jetzt schon eine geeignete Methode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrocarbon gases were determined in sediments from three mud volcanoes in the Sorokin Trough. In comparison to a reference station outside the mud volcano area, the deposits are characterized by an enrichment of high-molecular hydrocarbons (C2-C4), an absence of unsaturated homologues, a predominance of iso-butane in comparison with n-butane, and the presence of gas hydrate. The molecular composition of the hydrocarbon gases suggests their deep sources and thermogenic origin. In the pelagic sediments at the reference station, the methane concentration is relatively low (up to 49 ml/l); maximum concentrations are reached in deposits of the Dvurechenskii mud volcano (up to 400 ml/l). It was the first time that gas hydrate was sampled at the Dvurechenskii mud volcano. The gas extracted by dissociation of hydrate samples was dominated by methane (99.5%) with low amounts of ethane and propane (less than 0.5%). The isotopic composition of the methane varies between -62 and -66 per mill PDB in d13C, and between -185 and -209 per mill SMOW in dD, indicating a mainly biogenic origin with an admixture of thermogenic gas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica . This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authigenic carbonates, principally calcium-rich dolomites, with extremely variable isotopic compositions were recovered in organic-rich marine sediments during Leg 63 drilling off southern California and Baja California. These carbonates occur as thin layers in fine-grained, diatomaceous sediments and siliceous rocks, mostly deposited during the Neogene. A combination of textural, geochemical, and isotopic evidence indicates these dolomites formed as cements and precipitates in shallow subsurface zones of high alkalinity spawned by abundant CO2 and methane production during progressive microbial decay of organic matter. Depths and approximate temperatures of formation estimated from oxygen isotopes are 87 to 658 meters and 10°C to 50°C, respectively. Within any sedimentary section, dolomites may form simultaneously at several depths or at different times within the same interval. Highly variable carbon isotopes (-30 to +16 per mil) reflect the isotopic reservoir in which the carbonates formed. Oxidation of organic matter through microbial reduction of sulfate at shallow depths favors light-carbon carbonates such as those at Sites 468 and 471; heavy-carbon carbonates at Site 467 most likely formed below this zone where HC**12O3**- is preferentially removed by reduction of CO2 to methane during methanogenesis. An important controlling factor is the sedimentation rate, which dictates both the preservation of organic matter on the sea floor and depth distribution of subsurface zones of organic-matter decay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular and isotopic measurements of gas and water obtained from a gas hydrate at Site 570, DSDP Leg 84, are reported. The hydrate appeared to be Structure I and was composed of a solid framework of water molecules enclosing methane and small amounts of ethane and carbon dioxide. Carbon isotopic values for the hydrate-bound methane, ethane, and carbon dioxide were -41 to about -44, -27, and -2.9 per mil, respectively. The d13C-C1 values are consistent with void gas values that were determined to have a biogenic source. A significant thermogenic source was discounted because of high C1/C2 ratios and because the d13C-CO2 values in these sections were also anomalously heavy (or more positive) isotopically, suggesting that the methane was formed biogenically by reduction of heavy CO2 . The isotopically heavy hydrate d13C-C2 is also similar to void gas isotopic compositions and is either a result of low-temperature diagenesis producing heavy C2 in these immature sediment sections or upward migration of deeper thermogenic gas. The salinity of the hydrate water was 2.6 per mil with dDH2O and d18OH2O values of +1 and +2.2 per mil, respectively.