200 resultados para degeneracy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic, magnetic, and mechanical properties of CaCu3V4O12 are investigated by use of the density functional theory method. The calculated results indicate that CaCu3V4O12 is a half-metallic and ferrimagnetic compound. The magnetic coupling for Cu-V is antiferromagnetic, while those for Cu-Cu and V-V are ferromagnetic. The obtained elastic constants suggest that the compound is mechanically stable. The calculated oxidation states and density of states reveal the existence of a mixed valence for Cu and V. This supports the experimental observation of the mixed valence in Ca2+Cu2+Cu2+(V25+V24+)O-12.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of CaCu3Co4O12 were studied by use of the full-potential linearized augmented plane wave method. The calculated results indicate that CaCu3Co4O12 is stable both thermodynamically and mechanically. Both GGA (generalized gradient approximation) and GGA + U methods predict that CaCu3Co4O12 is metallic. The ferromagnetic configuration is only slightly more stable in energy compared with the non-magnetic configuration (3.7 meV), suggesting that they are competitive for being the ground state. Co is in the low spin state (S = 1/2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural stability and physical properties of CaCu3Fe4O12 were studied by the use of the full-potential linearized augmented plane wave method. The authors' calculated result indicates that the title compound is stable both thermodynamically and mechanically. It is ferrimagnetic and half-metallic. The calculated magnetic structure reveals that the coupling of Cu-Fe is antiferromagnetic, while those of Cu-Cu and Fe-Fe are ferromagnetic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic and magnetic properties of CaCu3Cr4O12 and CaCu3Cr2Sb2O12 are investigated by the use of the full-potential linearized augumented plane wave (FPLAPW) method. The calculated results indicate that CaCu3- Cr4O12 is a ferrimagnetic and half-metallic compound, in good agreement with previous theoretical studies. CaCu3- Cr2Sb2O12 is a ferrimagnetic semiconductor with a small gap of 0.136 eV. In both compounds, because Cr4+ 3d (d(2)) and Cr3+ 3d (d(3)) orbitals are less than half filled, the coupling between Cr-Cu is antiferromagnetic, whereas that between Cu-Cu and Cr-Cr is ferromagnetic. The total net spin moment is 5.0 and 3.0 mu(B) for CaCu3Cr4O12 and CaCu3Cr2Sb2O12, respectively. In CaCu3Cr4O12, the 3d electrons of Cr4+ are delocalized, which strengthens the Cr-Cr ferromagnetic coupling. For CaCu3Cr2Sb2O12, the doping of nonmagnetic ion Sb5+ reduces the Cr-Cr ferromagnetic coupling, and the half-filled Cr3+ t(2g) (t(2g)(3)) makes the chromium 3d electrons localized. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prevents the delocalization of electrons. Hence, CaCu3Cr2Sb2O12 shows insulating behavior, in agreement with the experimental observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly discriminating molecular topological index, EAID, is proposed based on the extended adjacency matrix. A systematic search for degeneracy was performed for 3 807 434 alkane trees, 202 558 complex cyclic or polycyclic graphs, and 430 472 structures containing heteroatoms. No counterexamples (two or more nonisomorphic structures with the same EAID number) were found. This is a hitherto unheard of power of discrimination. Thus EAID might be possibly used as supplementary reference for CAS Registry Numbers for structure documentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conductance of two Anderson impurity models, one with twofold and another with fourfold degeneracy, representing two types of quantum dots, is calculated using a world-line quantum Monte Carlo (QMC) method. Extrapolation of the imaginary time QMC data to zero frequency yields the linear conductance, which is then compared to numerical renormalization-group results in order to assess its accuracy. We find that the method gives excellent results at low temperature (T TK) throughout the mixed-valence and Kondo regimes but it is unreliable for higher temperature. © 2010 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion: electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H-3(+) and water at their dissociation limits; laser- heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss a parity nonconserving asymmetry in the cross section of KLL dielectronic recombination of polarized electrons on the hydrogenlike ions with Z less than or similar to 60. This effect is strongly enhanced because of the near degeneracy of doubly excited 2l2l(') states of opposite parity in He-like ions. For ions with Z similar to 30 the asymmetry is of the order of 10(-9). For Z approximate to 48 a level crossing takes place, leading to the PNC asymmetry of -1.3x10(-8), which is 10(8) times greater than the basic strength of the weak interaction in atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate a hitherto largely unexplored regime of cavity quantum electrodynamics in which a highly-reflective element positioned between the end-mirrors of a typical Fabry--P\'erot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy. We examine applications of this generic `optical coalescence' phenomenon for the generation of enhanced photon--phonon nonlinearities in optomechanics and atom--photon nonlinearities in cavity quantum electrodynamics with strongly-coupled emitters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a scheme to strongly enhance the readout sensitivity of the squared displacement of a mobile scatterer placed in a Fabry-Pérot cavity. We investigate the largely unexplored regime of cavity electrodynamics in which a highly reflective element positioned between the end mirrors of a symmetric Fabry-Pérot resonator strongly modifies the cavity response function, such that two longitudinal modes with different spatial parity are brought close to frequency degeneracy and interfere in the cavity output field. In the case of a movable middle reflector we show that the interference in this generic "optical coalescence" phenomenon gives rise to an enhanced frequency shift of the peaks of the cavity transmission that can be exploited in optomechanics. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As global resistance to conventional antibiotics rises we need to develop new strategies to develop future novel therapeutics. In our quest to design novel anti-infectives and antimicrobials it is of interest to investigate host-pathogen interactions and learn from the complexity of host defense strategies that have evolved over millennia. A myriad of host defense molecules are now known to play a role in protection against human infection. However, the interaction between host and pathogen is recognized to be a multifaceted one, involving countless host proteins, including several families of peptides. The regulation of infection and inflammation by multiple peptide families may represent an evolutionary failsafe in terms of functional degeneracy and emphasizes the significance of host defense in survival. One such family is the neuropeptides (NPs), which are conventionally defined as peptide neurotransmitters but have recently been shown to be pleiotropic molecules that are integral components of the nervous and immune systems. In this review we address the antimicrobial and anti-infective effects of NPs both in vitro and in vivo and discuss their potential therapeutic usefulness in overcoming infectious diseases. With improved understanding of the efficacy of NPs, these molecules could become an important part of our arsenal of weapons in the treatment of infection and inflammation. It is envisaged that targeted therapy approaches that selectively exploit the anti-infective, antimicrobial and immunomodulatory properties of NPs could become useful adjuncts to our current therapeutic modalities. © 2012 Bentham Science Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The linear and nonlinear properties of ion acoustic excitations propagating in warm dense electron-positron-ion plasma are investigated. Electrons and positrons are assumed relativistic and degenerate, following the Fermi-Dirac statistics, whereas the warm ions are described by a set of classical fluid equations. A linear dispersion relation is derived in the linear approximation. Adopting a reductive perturbation method, the Korteweg-de Vries equation is derived, which admits a localized wave solution in the form of a small-amplitude weakly super-acoustic pulse-shaped soliton. The analysis is extended to account for arbitrary amplitude solitary waves, by deriving a pseudoenergy-balance like equation, involving a Sagdeev-type pseudopotential. It is shown that the two approaches agree exactly in the small-amplitude weakly super-acoustic limit. The range of allowed values of the pulse soliton speed (Mach number), wherein solitary waves may exist, is determined. The effects of the key plasma configuration parameters, namely, the electron relativistic degeneracy parameter, the ion (thermal)-to-the electron (Fermi) temperature ratio, and the positron-to-electron density ratio, on the soliton characteristics and existence domain, are studied in detail. Our results aim at elucidating the characteristics of ion acoustic excitations in relativistic degenerate plasmas, e.g., in dense astrophysical objects, where degenerate electrons and positrons may occur.