122 resultados para debugging


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of Abstract Interpretation has allowed the development of very sophisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system librarles), to genérate and simplify run-time tests, and to perform high-level program transformations such as múltiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements the described functionality, will be used to illustrate the fundamental ideas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global data-flow analysis of (constraint) logic programs, which is generally based on abstract interpretation [7], is reaching a comparatively high level of maturity. A natural question is whether it is time for its routine incorporation in standard compilers, something which, beyond a few experimental systems, has not happened to date. Such incorporation arguably makes good sense only if: • the range of applications of global analysis is large enough to justify the additional complication in the compiler, and • global analysis technology can deal with all the features of "practical" languages (e.g., the ISO-Prolog built-ins) and "scales up" for large programs. We present a tutorial overview of a number of concepts and techniques directly related to the issues above, with special emphasis on the first one. In particular, we concéntrate on novel uses of global analysis during program development and debugging, rather than on the more traditional application área of program optimization. The idea of using abstract interpretation for validation and diagnosis has been studied in the context of imperative programming [2] and also of logic programming. The latter work includes issues such as using approximations to reduce the burden posed on programmers by declarative debuggers [6, 3] and automatically generating and checking assertions [4, 5] (which includes the more traditional type checking of strongly typed languages, such as Gódel or Mercury [1, 8, 9]) We also review some solutions for scalability including modular analysis, incremental analysis, and widening. Finally, we discuss solutions for dealing with meta-predicates, side-effects, delay declarations, constraints, dynamic predicates, and other such features which may appear in practical languages. In the discussion we will draw both from the literature and from our experience and that of others in the development and use of the CIAO system analyzer. In order to emphasize the practical aspects of the solutions discussed, the presentation of several concepts will be illustrated by examples run on the CIAO system, which makes extensive use of global analysis and assertions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the design and implementation of visual paradigms for observing the execution of constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus on the display of data in CLP executions, where representation for constrained variables and for the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised depictions, have been implemented, and are used to showcase the usefulness of the visualizations developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an advanced program development environment, such as that discussed in the introduction of this book, several tools may coexist which handle both the program and information on the program in different ways. Also, these tools may interact among themselves and with the user. Thus, the different tools and the user need some way to communicate. It is our design principie that such communication be performed in terms of assertions. Assertions are syntactic objects which allow expressing properties of programs. Several assertion languages have been used in the past in different contexts, mainly related to program debugging. In this chapter we propose a general language of assertions which is used in different tools for validation and debugging of constraint logic programs in the context of the DiSCiPl project. The assertion language proposed is parametric w.r.t. the particular constraint domain and properties of interest being used in each different tool. The language proposed is quite general in that it poses few restrictions on the kind of properties which may be expressed. We believe the assertion language we propose is of practical relevance and appropriate for the different uses required in the tools considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visualization of program executions has been used in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualizing data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the run-time valúes of the variables, and the constraints among them. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automatic cost analysis of programs has been traditionally concentrated on a reduced number of resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certiflcation of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually application-dependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a datábase, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-deflnable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these deflnitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering a signiflcant set of interesting resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visualization of program executions has been found useful in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding flow control and the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this paper we discuss techniques for visualizing program execution and data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the program execution behavior (control), the runtime valúes of the variables, and the runtime constraints. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, Le., techniques which are intended to help in reducing the complexity of the visual information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automatic cost analysis of programs has been traditionally studied in terms of a number of concrete, predefined resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certification of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually applicationdependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a database, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-definable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these definitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering an ample set of interesting resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a generic analysis that infers both upper and lower bounds on the usage that a program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower- bound) cost functions for all procedures in the program. We also present an assertion language which is used to define both such resources and resource-related properties that the system can then check based on the results of the analysis. We have performed some experiments with some concrete resource-related properties such as execution steps, bits sent or received by an application, number of arithmetic operations performed, number of calls to a procedure, number of transactions, etc. presenting the resource usage functions inferred and the times taken to perform the analysis. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present in a tutorial fashion CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ciao is a public domain, next generation multi-paradigm programming environment with a unique set of features: Ciao offers a complete Prolog system, supporting ISO-Prolog, but its novel modular design allows both restricting and extending the language. As a result, it allows working with fully declarative subsets of Prolog and also to extend these subsets (or ISO-Prolog) both syntactically and semantically. Most importantly, these restrictions and extensions can be activated separately on each program module so that several extensions can coexist in the same application for different modules. Ciao also supports (through such extensions) programming with functions, higher-order (with predicate abstractions), constraints, and objects, as well as feature terms (records), persistence, several control rules (breadth-first search, iterative deepening, ...), concurrency (threads/engines), a good base for distributed execution (agents), and parallel execution. Libraries also support WWW programming, sockets, external interfaces (C, Java, TclTk, relational databases, etc.), etc. Ciao offers support for programming in the large with a robust module/object system, module-based separate/incremental compilation (automatically -no need for makefiles), an assertion language for declaring (optional) program properties (including types and modes, but also determinacy, non-failure, cost, etc.), automatic static inference and static/dynamic checking of such assertions, etc. Ciao also offers support for programming in the small producing small executables (including only those builtins used by the program) and support for writing scripts in Prolog. The Ciao programming environment includes a classical top-level and a rich emacs interface with an embeddable source-level debugger and a number of execution visualization tools. The Ciao compiler (which can be run outside the top level shell) generates several forms of architecture-independent and stand-alone executables, which run with speed, efficiency and executable size which are very competive with other commercial and academic Prolog/CLP systems. Library modules can be compiled into compact bytecode or C source files, and linked statically, dynamically, or autoloaded. The novel modular design of Ciao enables, in addition to modular program development, effective global program analysis and static debugging and optimization via source to source program transformation. These tasks are performed by the Ciao preprocessor ( ciaopp, distributed separately). The Ciao programming environment also includes lpdoc, an automatic documentation generator for LP/CLP programs. It processes Prolog files adorned with (Ciao) assertions and machine-readable comments and generates manuals in many formats including postscript, pdf, texinfo, info, HTML, man, etc. , as well as on-line help, ascii README files, entries for indices of manuals (info, WWW, ...), and maintains WWW distribution sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visualisation of program executions has been used in applications which include education and debugging. However, traditional visualisation techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behaviour of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualising data evolution in CLP. We briefly review some previously proposed visualisation paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyse the behaviour and characteristics of an execution. In particular, we concentrate on the representation of the run-time values of the variables, and the constraints among them. Given our interest in visualising large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have designed and implemented a framework that unifies unit testing and run-time verification (as well as static verification and static debugging). A key contribution of our approach is that a unified assertion language is used for all of these tasks. We first propose methods for compiling runtime checks for (parts of) assertions which cannot be verified at compile-time via program transformation. This transformation allows checking preconditions and postconditions, including conditional postconditions, properties at arbitrary program points, and certain computational properties. The implemented transformation includes several optimizations to reduce run-time overhead. We also propose a minimal addition to the assertion language which allows defining unit tests to be run in order to detect possible violations of the (partial) specifications expressed by the assertions. This language can express for example the input data for performing the unit tests or the number of times that the unit tests should be repeated. We have implemented the framework within the Ciao/CiaoPP system and effectively applied it to the verification of ISO-prolog compliance and to the detection of different types of bugs in the Ciao system source code. Several experimental results are presented that illustrate different trade-offs among program size, running time, or levels of verbosity of the messages shown to the user.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We attempt to integrate and start up the set of necessary tools to deploy the design cycle of embedded systems based on Embedded Linux on a "Cyclone V SoC" made by Altera. First, we will analyze the available tools for designing the hardware system of the SoCkit development kit, made by Arrow, which has a "Cyclone V SoC" system (based on a "ARM Cortex-A9 MP Core" architecture). When designing the SoCkit board hardware, we will create a new peripheral to integrate it into the hardware system, so it can be used as any other existent resource of the SoCkit board previously configured. Next, we will analyze the tools to generate an Embedded Linux distribution adapted to the SoCkit board. In order to generate the Linux distribution we will use, on the one hand, a software package from Yocto recommended by Altera; on the other hand, the programs and tools of Altera, Embedded Development Suite. We will integrate all the components needed to build the Embedded Linux distribution, creating a complete and functional system which can be used for developing software applications. Finally, we will study the programs for developing and debugging applications in C or C++ language that will be executed in this hardware platform, then we will program a Linux application as an example to illustrate the use of SoCkit board resources. RESUMEN Se pretende integrar y poner en funcionamiento el conjunto de herramientas necesarias para desplegar el ciclo de diseño de sistemas embebidos basados en "Embedded Linux" sobre una "Cyclone V SoC" de Altera. En primer lugar, se analizarán las diversas herramientas disponibles para diseñar el sistema hardware de la tarjeta de desarrollo SoCkit, fabricada por Arrow, que dispone de un sistema "Cyclone V SoC" (basado en una arquitectura "ARM Cortex A9 MP Core"). En el diseño hardware de la SoCkit se creará un periférico propio y se integrará en el sistema, pudiendo ser utilizado como cualquier otro recurso de la tarjeta ya existente y configurado. A continuación, también se analizarán las herramientas para generar una distribución de "Embedded Linux" adaptado a la placa SoCkit. Para generar la distribución de Linux se utilizará, por una parte, un paquete software de Yocto recomendado por Altera y, por otra parte, las propias herramientas y programas de Altera. Se integrarán todos los componentes necesarios para construir la distribución Linux, creando un sistema completo y funcional que se pueda utilizar para el desarrollo de aplicaciones software. Por último, se estudiarán las herramientas para el diseño y depuración de aplicaciones en lenguaje C ó C++ que se ejecutarán en esta plataforma hardware. Se pretende desarrollar una aplicación de ejemplo para ilustrar el uso de los recursos más utilizados de la SoCkit.