940 resultados para data-driven modelling
Resumo:
This is the first part of a study investigating a model-based transient calibration process for diesel engines. The motivation is to populate hundreds of parameters (which can be calibrated) in a methodical and optimum manner by using model-based optimization in conjunction with the manual process so that, relative to the manual process used by itself, a significant improvement in transient emissions and fuel consumption and a sizable reduction in calibration time and test cell requirements is achieved. Empirical transient modelling and optimization has been addressed in the second part of this work, while the required data for model training and generalization are the focus of the current work. Transient and steady-state data from a turbocharged multicylinder diesel engine have been examined from a model training perspective. A single-cylinder engine with external air-handling has been used to expand the steady-state data to encompass transient parameter space. Based on comparative model performance and differences in the non-parametric space, primarily driven by a high engine difference between exhaust and intake manifold pressures (ΔP) during transients, it has been recommended that transient emission models should be trained with transient training data. It has been shown that electronic control module (ECM) estimates of transient charge flow and the exhaust gas recirculation (EGR) fraction cannot be accurate at the high engine ΔP frequently encountered during transient operation, and that such estimates do not account for cylinder-to-cylinder variation. The effects of high engine ΔP must therefore be incorporated empirically by using transient data generated from a spectrum of transient calibrations. Specific recommendations on how to choose such calibrations, how many data to acquire, and how to specify transient segments for data acquisition have been made. Methods to process transient data to account for transport delays and sensor lags have been developed. The processed data have then been visualized using statistical means to understand transient emission formation. Two modes of transient opacity formation have been observed and described. The first mode is driven by high engine ΔP and low fresh air flowrates, while the second mode is driven by high engine ΔP and high EGR flowrates. The EGR fraction is inaccurately estimated at both modes, while EGR distribution has been shown to be present but unaccounted for by the ECM. The two modes and associated phenomena are essential to understanding why transient emission models are calibration dependent and furthermore how to choose training data that will result in good model generalization.
Resumo:
Financial prediction has attracted a lot of interest due to the financial implications that the accurate prediction of financial markets can have. A variety of data driven modellingapproaches have been applied but their performance has produced mixed results. In this study we apply both parametric (neural networks with active neurons) and nonparametric (analog complexing) self-organisingmodelling methods for the daily prediction of the exchangerate market. We also propose acombinedapproach where the parametric and nonparametricself-organising methods are combined sequentially, exploiting the advantages of the individual methods with the aim of improving their performance. The combined method is found to produce promising results and to outperform the individual methods when tested with two exchangerates: the American Dollar and the Deutche Mark against the British Pound.
Resumo:
This paper focuses on a problem of Grid system decomposition by developing its object model. Unified Modelling Language (UML) is used as a formalization tool. This approach is motivated by the complexity of the system being analysed and the need for simulation model design.
Resumo:
This work is aimed at understanding and unifying information on epidemiological modelling methods and how those methods relate to public policy addressing human health, specifically in the context of infectious disease prevention, pandemic planning, and health behaviour change. This thesis employs multiple qualitative and quantitative methods, and presents as a manuscript of several individual, data-driven projects that are combined in a narrative arc. The first chapter introduces the scope and complexity of this interdisciplinary undertaking, describing several topical intersections of importance. The second chapter begins the presentation of original data, and describes in detail two exercises in computational epidemiological modelling pertinent to pandemic influenza planning and policy, and progresses in the next chapter to present additional original data on how the confidence of the public in modelling methodology may have an effect on their planned health behaviour change as recommended in public health policy. The thesis narrative continues in the final data-driven chapter to describe how health policymakers use modelling methods and scientific evidence to inform and construct health policies for the prevention of infectious diseases, and concludes with a narrative chapter that evaluates the breadth of this data and recommends strategies for the optimal use of modelling methodologies when informing public health policy in applied public health scenarios.
Resumo:
Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.
Resumo:
Protected crop production is a modern and innovative approach to cultivating plants in a controlled environment to optimize growth, yield, and quality. This method involves using structures such as greenhouses or tunnels to create a sheltered environment. These productive solutions are characterized by a careful regulation of variables like temperature, humidity, light, and ventilation, which collectively contribute to creating an optimal microclimate for plant growth. Heating, cooling, and ventilation systems are used to maintain optimal conditions for plant growth, regardless of external weather fluctuations. Protected crop production plays a crucial role in addressing challenges posed by climate variability, population growth, and food security. Similarly, animal husbandry involves providing adequate nutrition, housing, medical care and environmental conditions to ensure animal welfare. Then, sustainability is a critical consideration in all forms of agriculture, including protected crop and animal production. Sustainability in animal production refers to the practice of producing animal products in a way that minimizes negative impacts on the environment, promotes animal welfare, and ensures the long-term viability of the industry. Then, the research activities performed during the PhD can be inserted exactly in the field of Precision Agriculture and Livestock farming. Here the focus is on the computational fluid dynamic (CFD) approach and environmental assessment applied to improve yield, resource efficiency, environmental sustainability, and cost savings. It represents a significant shift from traditional farming methods to a more technology-driven, data-driven, and environmentally conscious approach to crop and animal production. On one side, CFD is powerful and precise techniques of computer modeling and simulation of airflows and thermo-hygrometric parameters, that has been applied to optimize the growth environment of crops and the efficiency of ventilation in pig barns. On the other side, the sustainability aspect has been investigated and researched in terms of Life Cycle Assessment analyses.
Resumo:
A case sensitive intelligent model editor has been developed for constructing consistent lumped dynamic process models and for simplifying them using modelling assumptions. The approach is based on a systematic assumption-driven modelling procedure and on the syntax and semantics of process,models and the simplifying assumptions.
Resumo:
Dissertation presented to obtain the Ph.D degree in Bioinformatics
Resumo:
Earthworks tasks aim at levelling the ground surface at a target construction area and precede any kind of structural construction (e.g., road and railway construction). It is comprised of sequential tasks, such as excavation, transportation, spreading and compaction, and it is strongly based on heavy mechanical equipment and repetitive processes. Under this context, it is essential to optimize the usage of all available resources under two key criteria: the costs and duration of earthwork projects. In this paper, we present an integrated system that uses two artificial intelligence based techniques: data mining and evolutionary multi-objective optimization. The former is used to build data-driven models capable of providing realistic estimates of resource productivity, while the latter is used to optimize resource allocation considering the two main earthwork objectives (duration and cost). Experiments held using real-world data, from a construction site, have shown that the proposed system is competitive when compared with current manual earthwork design.
Resumo:
Lecture Notes in Computer Science, 9273
Resumo:
The mass of the top quark is measured in a data set corresponding to 4.6 fb−1 of proton--proton collisions with centre-of-mass energy s√=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top--antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets of a top-quark decay. Using these three jets the dijet mass is obtained from the two jets of the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of mt = 175.1 ± 1.4 (stat.) ± 1.2 (syst.) GeV.
Resumo:
Currently, the quality of the Indonesian national road network is inadequate due to several constraints, including overcapacity and overloaded trucks. The high deterioration rate of the road infrastructure in developing countries along with major budgetary restrictions and high growth in traffic have led to an emerging need for improving the performance of the highway maintenance system. However, the high number of intervening factors and their complex effects require advanced tools to successfully solve this problem. The high learning capabilities of Data Mining (DM) are a powerful solution to this problem. In the past, these tools have been successfully applied to solve complex and multi-dimensional problems in various scientific fields. Therefore, it is expected that DM can be used to analyze the large amount of data regarding the pavement and traffic, identify the relationship between variables, and provide information regarding the prediction of the data. In this paper, we present a new approach to predict the International Roughness Index (IRI) of pavement based on DM techniques. DM was used to analyze the initial IRI data, including age, Equivalent Single Axle Load (ESAL), crack, potholes, rutting, and long cracks. This model was developed and verified using data from an Integrated Indonesia Road Management System (IIRMS) that was measured with the National Association of Australian State Road Authorities (NAASRA) roughness meter. The results of the proposed approach are compared with the IIRMS analytical model adapted to the IRI, and the advantages of the new approach are highlighted. We show that the novel data-driven model is able to learn (with high accuracy) the complex relationships between the IRI and the contributing factors of overloaded trucks
Resumo:
Tese de Doutoramento em Biologia Ambiental e Molecular
Advanced mapping of environmental data: Geostatistics, Machine Learning and Bayesian Maximum Entropy
Resumo:
This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.