981 resultados para dark matter simulations


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the impact of dissipationless minor galaxy mergers on the angular momentum of the remnant. Our simulations cover a range of initial orbital characteristics, and the system consists of a massive galaxy with a bulge and disk merging with a much less massive (one-tenth or one-twentieth) gasless companion that has a variety of morphologies (disk-or elliptical-like) and central baryonic mass concentrations. During the process of merging, the orbital angular momentum is redistributed into the internal angular momentum of the final system; the internal angular momentum of the primary galaxy can increase or decrease depending on the relative orientation of the orbital spin vectors (direct or retrograde), while the initially nonrotating dark matter halo always gains angular momentum. The specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits, and the ratio of rotation speed to velocity dispersion of the merger remnant is lower than the initial value, not only because of an increase in the dispersion but also of the slowing-down of the disk rotation. We briefly discuss several astrophysical implications of these results, suggesting that minor mergers do not cause a "random walk" process of the angular momentum of the stellar disk component of galaxies, but rather a steady decrease. Minor mergers may play a role in producing the large scatter observed in the Tully-Fisher relation for S0 galaxies, as well as in the increase of the velocity dispersion and the decrease in upsilon/sigma at large radii as observed in S0 galaxies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In our work we have used the atomic hydrogen [HΙ] gas distribution in the HΙ 21-cm line emission to study the dark matter halo perturbations. For tHΙs analysis, the 2-D HΙ surface density and velocity maps (arcHΙval) of the galaxies in the Eridanus group (obtained using the GMRT) and in the Ursa Major group (obtained from WSRT) were used. In addition a few HΙckson Compact Groups of galaxies were also studied using the GMRT. The HΙ maps of these galaxies were Fourier analysed to estimate the asymmetry in the distribution and motion of gas. The average asymmetry parameter in the 1.5 to 2.5 K′-band scale lengths was found to be ~ 0.27 for the Eridanus group of galaxies wHΙle it was ~ 0.14 for the Ursa Major group of galaxies. The asymmetries in the distribution of HΙ as a function of Hubble type of galaxies were also studied and was found to be directly correlated with the compactness of the groups. In addition, the trend in the asymmetry as a function of the Hubble type of galaxies was opposite to that seen in the field galaxies, i.e., in the group galaxies, the early type galaxies showed more asymmetry than late type. These two aspects indicated that tidal interactions between the galaxies in a group environment to be the major cause of asymmetries. The observed asymmetry parameters were consistent with recent numerical simulations of asymmetries of gas disk caused by fly-by interactions. We have also estimated the perturbation of dark matter halo using the asymmetry parameter obtained from the Fourier series analysis of the surface density maps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present global multidimensional numerical simulations of the plasma that pervades the dark matter haloes of clusters, groups and massive galaxies (the intracluster medium; ICM). Observations of clusters and groups imply that such haloes are roughly in global thermal equilibrium, with heating balancing cooling when averaged over sufficiently long time- and length-scales; the ICM is, however, very likely to be locally thermally unstable. Using simple observationally motivated heating prescriptions, we show that local thermal instability (TI) can produce a multiphase medium with similar to 104 K cold filaments condensing out of the hot ICM only when the ratio of the TI time-scale in the hot plasma (tTI) to the free-fall time-scale (tff) satisfies tTI/tff? 10. This criterion quantitatively explains why cold gas and star formation are preferentially observed in low-entropy clusters and groups. In addition, the interplay among heating, cooling and TI reduces the net cooling rate and the mass accretion rate at small radii by factors of similar to 100 relative to cooling-flow models. This dramatic reduction is in line with observations. The feedback efficiency required to prevent a cooling flow is similar to 10-3 for clusters and decreases for lower mass haloes; supernova heating may be energetically sufficient to balance cooling in galactic haloes. We further argue that the ICM self-adjusts so that tTI/tff? 10 at all radii. When this criterion is not satisfied, cold filaments condense out of the hot phase and reduce the density of the ICM. These cold filaments can power the black hole and/or stellar feedback required for global thermal balance, which drives tTI/tff? 10. In comparison to clusters, groups have central cores with lower densities and larger radii. This can account for the deviations from self-similarity in the X-ray luminositytemperature () relation. The high-velocity clouds observed in the Galactic halo can be due to local TI producing multiphase gas close to the virial radius if the density of the hot plasma in the Galactic halo is >rsim 10-5 cm-3 at large radii.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intensities and relative abundances of galactic cosmic ray protons and antiprotons have been measured with the Isotope Matter Antimatter Experiment (IMAX), a balloon-borne magnet spectrometer. The IMAX payload had a successful flight from Lynn Lake, Manitoba, Canada on July 16, 1992. Particles detected by IMAX were identified by mass and charge via the Cherenkov-Rigidity and TOP-Rigidity techniques, with measured rms mass resolution ≤0.2 amu for Z=1 particles.

Cosmic ray antiprotons are of interest because they can be produced by the interactions of high energy protons and heavier nuclei with the interstellar medium as well as by more exotic sources. Previous cosmic ray antiproton experiments have reported an excess of antiprotons over that expected solely from cosmic ray interactions.

Analysis of the flight data has yielded 124405 protons and 3 antiprotons in the energy range 0.19-0.97 GeV at the instrument, 140617 protons and 8 antiprotons in the energy range 0.97-2.58 GeV, and 22524 protons and 5 antiprotons in the energy range 2.58-3.08 GeV. These measurements are a statistical improvement over previous antiproton measurements, and they demonstrate improved separation of antiprotons from the more abundant fluxes of protons, electrons, and other cosmic ray species.

When these results are corrected for instrumental and atmospheric background and losses, the ratios at the top of the atmosphere are p/p=3.21(+3.49, -1.97)x10^(-5) in the energy range 0.25-1.00 GeV, p/p=5.38(+3.48, -2.45) x10^(-5) in the energy range 1.00-2.61 GeV, and p/p=2.05(+1.79, -1.15) x10^(-4) in the energy range 2.61-3.11 GeV. The corresponding antiproton intensities, also corrected to the top of the atmosphere, are 2.3(+2.5, -1.4) x10^(-2) (m^2 s sr GeV)^(-1), 2.1(+1.4, -1.0) x10^(-2) (m^2 s sr GeV)^(-1), and 4.3(+3.7, -2.4) x10^(-2) (m^2 s sr GeV)^(-1) for the same energy ranges.

The IMAX antiproton fluxes and antiproton/proton ratios are compared with recent Standard Leaky Box Model (SLBM) calculations of the cosmic ray antiproton abundance. According to this model, cosmic ray antiprotons are secondary cosmic rays arising solely from the interaction of high energy cosmic rays with the interstellar medium. The effects of solar modulation of protons and antiprotons are also calculated, showing that the antiproton/proton ratio can vary by as much as an order of magnitude over the solar cycle. When solar modulation is taken into account, the IMAX antiproton measurements are found to be consistent with the most recent calculations of the SLBM. No evidence is found in the IMAX data for excess antiprotons arising from the decay of galactic dark matter, which had been suggested as an interpretation of earlier measurements. Furthermore, the consistency of the current results with the SLBM calculations suggests that the mean antiproton lifetime is at least as large as the cosmic ray storage time in the galaxy (~10^7 yr, based on measurements of cosmic ray ^(10)Be). Recent measurements by two other experiments are consistent with this interpretation of the IMAX antiproton results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents investigations in four areas of theoretical astrophysics: the production of sterile neutrino dark matter in the early Universe, the evolution of small-scale baryon perturbations during the epoch of cosmological recombination, the effect of primordial magnetic fields on the redshifted 21-cm emission from the pre-reionization era, and the nonlinear stability of tidally deformed neutron stars.

In the first part of the thesis, we study the asymmetry-driven resonant production of 7 keV-scale sterile neutrino dark matter in the primordial Universe at temperatures T >~ 100 MeV. We report final DM phase space densities that are robust to uncertainties in the nature of the quark-hadron transition. We give transfer functions for cosmological density fluctuations that are useful for N-body simulations. We also provide a public code for the production calculation.

In the second part of the thesis, we study the instability of small-scale baryon pressure sound waves during cosmological recombination. We show that for relevant wavenumbers, inhomogenous recombination is driven by the transport of ionizing continuum and Lyman-alpha photons. We find a maximum growth factor less than ≈ 1.2 in 107 random realizations of initial conditions. The low growth factors are due to the relatively short duration of the recombination epoch.

In the third part of the thesis, we propose a method of measuring weak magnetic fields, of order 10-19 G (or 10-21 G if scaled to the present day), with large coherence lengths in the inter galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. We perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-alpha photons.

In the final part of the thesis, we study the non-linear effects of tidal deformations of neutron stars (NS) in a compact binary. We compute the largest three- and four-mode couplings among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We demonstrate the near-exact cancellation of their effects, and resolve the question of the stability of the tidally deformed NS to leading order. This result is significant for the extraction of binary parameters from gravitational wave observations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied, for the first time, the near-infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from a homogeneous Fabry-Perot sample of galaxies [the Gassendi HAlpha survey of SPirals (GHASP) survey]. The main advantage of GHASP over other samples is that the maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colours, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48 +/- 0.38 and 3.64 +/- 0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratio recipes were used. We also point out, for the first time, that the rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than the flat ones or the symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K) similar to -20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well-defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This continuing study of intragroup light in compact groups of galaxies aims to establish new constraints to models of formation and evolution of galaxy groups, specially of compact groups, which are a key part in the evolution of larger structures, such as clusters. In this paper we present three additional groups (HCG 15, 35 and 51) using deep wide-field B- and R-band images observed with the LAICA camera at the 3.5-m telescope at the Calar Alto observatory (CAHA). This instrument provides us with very stable flat-fielding, a mandatory condition for reliably measuring intragroup diffuse light. The images were analysed with the OV_WAV package, a wavelet technique that allows us to uncover the intragroup component in an unprecedented way. We have detected that 19, 15 and 26 per cent of the total light of HCG 15, 35 and 51, respectively, are in the diffuse component, with colours that are compatible with old stellar populations and with mean surface brightness that can be its low as 28.4 B mag arcsec(-2). Dynamical masses, crossing times and mass-to-light ratios were recalculated using the new group parameters. Also tidal features were analysed using the wavelet technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied superclusters of galaxies in a volume-limited sample extracted from the Sloan Digital Sky Survey Data Release 7 and from mock catalogues based on a semi-analytical model of galaxy evolution in the Millennium Simulation. A density field method was applied to a sample of galaxies brighter than M(r) = -21+5 log h(100) to identify superclusters, taking into account selection and boundary effects. In order to evaluate the influence of the threshold density, we have chosen two thresholds: the first maximizes the number of objects (D1) and the second constrains the maximum supercluster size to similar to 120 h(-1) Mpc (D2). We have performed a morphological analysis, using Minkowski Functionals, based on a parameter, which increases monotonically from filaments to pancakes. An anticorrelation was found between supercluster richness (and total luminosity or size) and the morphological parameter, indicating that filamentary structures tend to be richer, larger and more luminous than pancakes in both observed and mock catalogues. We have also used the mock samples to compare supercluster morphologies identified in position and velocity spaces, concluding that our morphological classification is not biased by the peculiar velocities. Monte Carlo simulations designed to investigate the reliability of our results with respect to random fluctuations show that these results are robust. Our analysis indicates that filaments and pancakes present different luminosity and size distributions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Gamma = beta H + gamma H(0), where H is the Hubble parameter and H(0) is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z(eq), the redshift of the epoch of matter - radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z(eq) approximate to 3000 and z approximate to 0) in the evolution of the Universe. The comparison of the parameter values, {beta, gamma}, determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z(eq) from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for beta = 0 this conflict is only at less than or similar to 2 sigma, it worsens as beta increases from zero.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a comprehensive analysis of the spatial, kinematic and chemical properties of stars and globular clusters (GCs) in the `ordinary` elliptical galaxy NGC 4494 using data from the Keck and Subaru telescopes. We derive galaxy surface brightness and colour profiles out to large galactocentric radii. We compare the latter to metallicities derived using the near-infrared Calcium Triplet. We obtain stellar kinematics out to similar to 3.5 effective radii. The latter appear flattened or elongated beyond similar to 1.8 effective radii in contrast to the relatively round photometric isophotes. In fact, NGC 4494 may be a flattened galaxy, possibly even an S0, seen at an inclination of similar to 45 degrees. We publish a catalogue of 431 GC candidates brighter than i(0) = 24 based on the photometry, of which 109 are confirmed spectroscopically and 54 have measured spectroscopic metallicities. We also report the discovery of three spectroscopically confirmed ultra-compact dwarfs around NGC 4494 with measured metallicities of -0.4 less than or similar to [Fe/H] less than or similar to -0.3. Based on their properties, we conclude that they are simply bright GCs. The metal-poor GCs are found to be rotating with similar amplitude as the galaxy stars, while the metal-rich GCs show marginal rotation. We supplement our analysis with available literature data and results. Using model predictions of galaxy formation, and a suite of merger simulations, we find that many of the observational properties of NGC 4494 may be explained by formation in a relatively recent gas-rich major merger. Complete studies of individual galaxies incorporating a range of observational avenues and methods such as the one presented here will be an invaluable tool for constraining the fine details of galaxy formation models, especially at large galactocentric radii.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, de Roany and Pacheco (Gen Relativ Gravit, doi:10.1007/s10714-010-1069-2) performed a Newtonian analysis on the evolution of perturbations for a class of relativistic cosmological models with Creation of Cold Dark Matter (CCDM) proposed by the present authors (Lima et al. in JCAP 1011:027, 2010). In this note we demonstrate that the basic equations adopted in their work do not recover the specific (unperturbed) CCDM model. Unlike to what happens in the original CCDM cosmology, their basic conclusions refer to a decelerating cosmological model in which there is no transition from a decelerating to an accelerating regime as required by SNe type Ia and complementary observations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on perturbation theory, we study the dynamics of how dark matter and dark energy in the collapsing system approach dynamical equilibrium when they are in interaction. We find that the interaction between dark sectors cannot ensure the dark energy to fully cluster along with dark matter. When dark energy does not trace dark matter, we present a new treatment on studying the structure formation in the spherical collapsing system. Furthermore we examine the cluster number counts dependence on the interaction between dark sectors and analyze how dark energy inhomogeneities affect cluster abundances. It is shown that cluster number counts can provide specific signature of dark sectors interaction and dark energy inhomogeneities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the mutual interaction between the dark sectors (dark matter and dark energy) of the Universe by resorting to the extended thermodynamics of irreversible processes and constrain the former with supernova type Ia data. As a by-product, the present dark matter temperature results are not extremely small and can meet the independent estimate of the temperature of the gas of sterile neutrinos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations: however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP