925 resultados para dS vacua in string theory
Resumo:
In this thesis, we shall work in the framework of type IIB Calabi-Yau flux compactifications and present a detailed review of moduli stabilisation studying in particular the phenomenological implications of the LARGE-volume scenario (LVS). All the physical relevant quantities such as moduli masses and soft-terms, are computed and compared to the phenomenological constraints that today guide the research. The structure of this thesis is the following. The first chapter introduces the reader to the fundamental concepts that are essentially supersymmetry-breaking, supergravity and string moduli, which represent the basic framework of our discussion. In the second chapter we focus our attention on the subject of moduli stabilisation. Starting from the structure of the supergravity scalar potential, we point out the main features of moduli dynamics, we analyse the KKLT and LARGE-volume scenario and we compute moduli masses and couplings to photons which play an important role in the early-universe evolution since they are strictly related to the decay rate of moduli particles. The third chapter is then dedicated to the calculation of soft-terms, which arise dynamically from gravitational interactions when moduli acquire a non-zero vacuum expectation value (VeV). In the last chapter, finally, we summarize and discuss our results, underling their phenomenological aspects. Moreover, in the last section we analyse the implications of the outcomes for standard cosmology, with particular interest in the cosmological moduli problem.
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.
Resumo:
Hiltner
Resumo:
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed
Resumo:
We treat graphoid and separoid structures within the mathematical framework of model theory, specially suited for representing and analysing axiomatic systems with multiple semantics. We represent the graphoid axiom set in model theory, and translate algebraic separoid structures to another axiom set over the same symbols as graphoids. This brings both structures to a common, sound theoretical ground where they can be fairly compared. Our contribution further serves as a bridge between the most recent developments in formal logic research, and the well-known graphoid applications in probabilistic graphical modelling.
Resumo:
We outline here a proof that a certain rational function Cn(q, t), which has come to be known as the “q, t-Catalan,” is in fact a polynomial with positive integer coefficients. This has been an open problem since 1994. Because Cn(q, t) evaluates to the Catalan number at t = q = 1, it has also been an open problem to find a pair of statistics a, b on the collection
Resumo:
The mathematical models of the complex reality are texts belonging to a certain literature that is written in a semi-formal language, denominated L(MT) by the authors whose laws linguistic mathematics have been previously defined. This text possesses linguistic entropy that is the reflection of the physical entropy of the processes of real world that said text describes. Through the temperature of information defined by Mandelbrot, the authors begin a text-reality thermodynamic theory that drives to the existence of information attractors, or highly structured point, settling down a heterogeneity of the space text, the same one that of ontologic space, completing the well-known law of Saint Mathew, of the General Theory of Systems and formulated by Margalef saying: “To the one that has more he will be given, and to the one that doesn't have he will even be removed it little that it possesses.
Resumo:
Mode of access: Internet.