876 resultados para cyclic loading


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current artificial heart valves are classified as mechanical and bioprosthetic. An appealing pathway that promises to overcome the shortcomings of commercially available heart valves is offered by the interdisciplinary approach of cardiovascular tissue engineering. However, the mechanical properties of the Tissue Engineering Heart Valves (TEHV) are limited and generally fail in the long-term use. To meet this performance challenge novel biodegradable triblock copolymer poly(ethylene oxide)-polypropylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO or F108) crosslinked to Silk Fibroin (F108-SilkC) to be used as tri-leaflet heart valve material was investigated. ^ Synthesis of ten polymers with varying concentration and thickness (55 µm, 75 µm and 100 µm) was achieved via a covalent crosslinking scheme using bifunctional polyethylene glycol diglycidyl ether (PEGDE). Static and fatigue testing were used to assess mechanical properties of films, and hydrodynamic testing was performed to determine performance under a simulated left ventricular flow regime. The crosslinked copolymer (F108-Silk C) showed greater flexibility and resilience, but inferior ultimate tensile strength, by increasing concentration of PEGDE. Concentration molar ratio of 80:1 (F108: Silk) and thickness of 75 µm showed longer fatigue life for both tension-tension and bending fatigue tests. Four valves out of twelve designed satisfactorily complied with minimum performance requirement ISO 5840, 2005. ^ In conclusion, it was demonstrated that the applicability of a degradable polymer in conjugation with silk fibroin for tissue engineering cardiovascular use, specifically for aortic valve leaflet design, met the performance demands. Thinner thicknesses (t<75 µm) in conjunction with stiffness lower than 320 MPa (80:1, F108: Silk) are essential for the correct functionality of proposed heart valve biomaterial F108-SilkC. Fatigue tests were demonstrated to be a useful tool to characterize biomaterials that undergo cyclic loading. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The micro-deformations caused by cyclic loading origins the variation of the distances between atoms of the crystal lattice producing the irreversible component. In order to study and understand the microstructural behavior of the material this paper investigated the influence suffered by residual stresses in thrust rolling bearing races fabricated in AISI 52100 steel, after tests by cyclic rolling contact in a tribometer at 1m/s under two contact pressures (500 MPa and 1400 MPa) in dry and boundary lubrication conditions. Procedures of tests thermo-acustically isolated were developed for monitoring the contact temperature and sound pressure level signals to establish a comparison between the residual stress measurements, micro-hardness Vickers and micrographic registers searching an indication of wear evolution. The sin²ψ method by X-ray diffraction technique was used to quantify the residual stresses. Three raceway zones were selected for the evaluation of wear and surface morphology after predetermined cycling, comparing with their new condition ("as received"). Micro-hardness and residual stress measurements showed significant changes after the tests and it was possible to observe the relationship between the increase of sound pressure level and the residual stress for dry and lubricated conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The micro-deformations caused by cyclic loading origins the variation of the distances between atoms of the crystal lattice producing the irreversible component. In order to study and understand the microstructural behavior of the material this paper investigated the influence suffered by residual stresses in thrust rolling bearing races fabricated in AISI 52100 steel, after tests by cyclic rolling contact in a tribometer at 1m/s under two contact pressures (500 MPa and 1400 MPa) in dry and boundary lubrication conditions. Procedures of tests thermo-acustically isolated were developed for monitoring the contact temperature and sound pressure level signals to establish a comparison between the residual stress measurements, micro-hardness Vickers and micrographic registers searching an indication of wear evolution. The sin²ψ method by X-ray diffraction technique was used to quantify the residual stresses. Three raceway zones were selected for the evaluation of wear and surface morphology after predetermined cycling, comparing with their new condition ("as received"). Micro-hardness and residual stress measurements showed significant changes after the tests and it was possible to observe the relationship between the increase of sound pressure level and the residual stress for dry and lubricated conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present numerical investigation offers evidence concerning the validity and objectivity of the predictions of a simple, yet practical, finite element model concerning the responses of steel fibre reinforced concrete structural elements under static monotonic and cyclic loading. Emphasis is focused on realistically describing the fully brittle tensile behaviour of plain concrete and the contribution of steel fibres on the post-cracking behaviour it exhibits. The good correlation exhibited between the numerical predictions and their experimental counterparts reveals that, despite its simplicity, the subject model is capable of providing realistic predictions concerning the response of steel fibre reinforced concrete structural configurations exhibiting both ductile and brittle modes of failure without requiring recalibration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Weiterentwicklungen in der Betontechnologie führten in den letzten Jahrzehnten zu Hochleistungsbetonen mit immer höheren Festigkeiten. Der Ermüdungsnachweis wurde jedoch kaum weiterentwickelt und beinhaltet immer noch sehr grobe Herangehensweisen bei der Berücksichtigung des Materialwiderstands von Beton. Für eine grundlegende Weiterentwicklung dieses Nachweises fehlt noch das notwendige Wissen zu den Mechanismen der Betonermüdung. Das Ziel dieser Arbeit war es daher, grundlegende Erkenntnisse zum Ermüdungsverhalten hochfester Betone bei unterschiedlichen zyklischen Beanspruchungen zu ermitteln und hierdurch zu einem besseren Verständnis der Mechanismen der Betonermüdung beizutragen. In der vorliegenden Arbeit wurde das Ermüdungsverhalten eines hochfesten Betons bei Druckschwellbeanspruchung anhand der Dehnungs- und Steifigkeitsentwicklungen untersucht. Betrachtet wurden dabei die Einflüsse der bezogenen Oberspannung, der Belastungsfrequenz und der Wellenform. Zusätzlich wurden, ausgehend von in der Literatur dokumentierten Ansätzen, Versuche bei monoton steigender Beanspruchung und Dauerstandbeanspruchung vergleichend durchgeführt. Die Dehnungs- und Steifigkeitsentwicklungen werden durch die untersuchten Belastungsparameter der Ermüdungsbeanspruchung eindeutig beeinflusst. Charakteristische Zusammenhänge zwischen der Beeinflussung einzelner Kenngrößen der Dehnungs- und Steifigkeitsentwicklung und der Beeinflussung der Bruchlastwechselzahlen wurden aufgezeigt. Anhand der Dehnungen und Steifigkeiten an den Phasenübergängen konnten Hinweise auf beanspru-chungsartabhängige Gefügezustände abgeleitet werden. Die vergleichende Auswertung des Dehnungsverhaltens bei monoton steigender Beanspruchung, Ermüdungsbeanspruchung und Dauerstandbeanspruchung zeigte, dass das Ermüdungsverhalten von Beton nicht adäquat in Anlehnung an andere Beanspruchungsarten beschrieben werden kann. Die Untersuchungsergebnisse wurden in eine Modellvorstellung übertragen, die zur Beurteilung der baustofflichen Phänomene bei zyklischen Beanspruchungen geeignet ist. Dabei wurde die Hypothese aufgestellt, dass sich unterschiedlich ausgeprägte Kleinst-Gefügeveränderungen beanspruchungsabhängig einstellen, die die Entstehung und Ausbreitung von Mikrorissen beeinflussen. Die detaillierte Untersuchung der Dehnungs- und Steifigkeitsentwicklungen führte zu neuen und tiefergehenden Erkenntnissen und sollte ergänzt durch die Betrachtungen von Gefügezuständen zukünftig weiterverfolgt werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rainflow counting methods convert a complex load time history into a set of load reversals for use in fatigue damage modeling. Rainflow counting methods were originally developed to assess fatigue damage associated with mechanical cycling where creep of the material under load was not considered to be a significant contributor to failure. However, creep is a significant factor in some cyclic loading cases such as solder interconnects under temperature cycling. In this case, fatigue life models require the dwell time to account for stress relaxation and creep. This study develops a new version of the multi-parameter rainflow counting algorithm that provides a range-based dwell time estimation for use with time-dependent fatigue damage models. To show the applicability, the method is used to calculate the life of solder joints under a complex thermal cycling regime and is verified by experimental testing. An additional algorithm is developed in this study to provide data reduction in the results of the rainflow counting. This algorithm uses a damage model and a statistical test to determine which of the resultant cycles are statistically insignificant to a given confidence level. This makes the resulting data file to be smaller, and for a simplified load history to be reconstructed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Programa de Pós-Graduação em Geotecnia, 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent developments in micro- and nanoscale 3D fabrication techniques have enabled the creation of materials with a controllable nanoarchitecture that can have structural features spanning 5 orders of magnitude from tens of nanometers to millimeters. These fabrication methods in conjunction with nanomaterial processing techniques permit a nearly unbounded design space through which new combinations of nanomaterials and architecture can be realized. In the course of this work, we designed, fabricated, and mechanically analyzed a wide range of nanoarchitected materials in the form of nanolattices made from polymer, composite, and hollow ceramic beams. Using a combination of two-photon lithography and atomic layer deposition, we fabricated samples with periodic and hierarchical architectures spanning densities over 4 orders of magnitude from ρ=0.3-300kg/m3 and with features as small as 5nm. Uniaxial compression and cyclic loading tests performed on different nanolattice topologies revealed a range of novel mechanical properties: the constituent nanoceramics used here have size-enhanced strengths that approach the theoretical limit of materials strength; hollow aluminum oxide (Al2O3) nanolattices exhibited ductile-like deformation and recovered nearly completely after compression to 50% strain when their wall thicknesses were reduced below 20nm due to the activation of shell buckling; hierarchical nanolattices exhibited enhanced recoverability and a near linear scaling of strength and stiffness with relative density, with E∝ρ1.04 and σy∝ρ1.17 for hollow Al2O3 samples; periodic rigid and non-rigid nanolattice topologies were tested and showed a nearly uniform scaling of strength and stiffness with relative density, marking a significant deviation from traditional theories on “bending” and “stretching” dominated cellular solids; and the mechanical behavior across all topologies was highly tunable and was observed to strongly correlate with the slenderness λ and the wall thickness-to-radius ratio t/a of the beams. These results demonstrate the potential of nanoarchitected materials to create new highly tunable mechanical metamaterials with previously unattainable properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most mechanical components experience multi-axial cyclic loading conditions during service. Experimental analysis of fatigue cracks under such conditions is not easy and most works tend to focus more on the simpler but less realistic case of uni-axial loading. Consequently, there are many uncertainties related to the load sequence effect that are now well known and are not normally incorporated into the growth models. The current work presents a new methodology for evaluating overload effect in biaxial fatigue cracks. The methodology includes evaluation of mixed-mode (KI and KII) stress intensity factor and the Crack Opening Displacement for samples with and without overload cycle under biaxial loading. The methodology is tested under a range of crack lengths. All crack-tip information is obtained with a hybrid methodology that combines experimental full-field digital image correlation data and Williams' elastic model describing the crack-tip field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous earthquakes showed that shear wall damage could lead to catastrophic failures of the reinforced concrete building. The lateral load capacity of shear walls needs to be estimated to minimize associated losses during catastrophic events; hence it is necessary to develop and validate reliable and stable numerical methods able to converge to reasonable estimations with minimum computational effort. The beam-column 1-D line element with fiber-type cross-section model is a practical option that yields results in agreement with experimental data. However, shortcomings of using this model to predict the local damage response may come from the fact that the model requires fine calibration of material properties to overcome regularization and size effects. To reduce the mesh-dependency of the numerical model, a regularization method based on the concept of post-yield energy is applied in this work to both the concrete and the steel material constitutive laws to predict the nonlinear cyclic response and failure mechanism of concrete shear walls. Different categories of wall specimens known to produce a different response under in plane cyclic loading for their varied geometric and detailing characteristics are considered in this study, namely: 1) scaled wall specimens designed according to the European seismic design code and 2) unique full-scale wall specimens detailed according to the U.S. design code to develop a ductile behavior under cyclic loading. To test the boundaries of application of the proposed method, two full-scale walls with a mixed shear-flexure response and different values of applied axial load are also considered. The results of this study show that the use of regularized constitutive models considerably enhances the response predictions capabilities of the model with regards to global force-drift response and failure mode. The simulations presented in this thesis demonstrate the proposed model to be a valuable tool for researchers and engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The objective of this study was to verify the effect of cyclic compressive loading on the shear bond strength of an adhesive system following collagen removal. Materials and Methods: Sixty bovine teeth were divided into 4 groups based on the adhesive procedure used: groups 1 and 2 - etching with 35% phosphoric acid and application of the Single Bond adhesive system; groups 3 and 4 - after etching, a 10% sodium hypochlorite solution was applied for 1 min before the application of the adhesive. In all the specimens, a Z100 resin cylinder was built up over the bond area. Groups 2 and 4 were submitted to 500,000 cycles with a load of 100 N. Results: The mean values for the shear bond test (MPa) were: group 1: 7.37 ± 1.15; group 2: 5.72 ± 1.66; group 3: 5.95 ± 1.21; group 4: 3.66 ± 1.12. There was no difference between groups 1 and 2 (p > 0.01). Between groups 1 and 3, 2 and 4, and 3 and 4 there was a significant difference (p < 0.01). The majority of the specimens demonstrated an adhesive failure. Conclusion: The application of sodium hypochlorite on dentin decreased the values of shear bond strength, as did the load cycling in the group treated with sodium hypochlorite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the numerical assessment of the influence of parameters such as pre-compression level, aspect ratio, vertical and horizontal reinforcement ratios and boundary conditions on the lateral strength of masonry walls under in-plane loading. The numerical study is performed through the software DIANA (R) based on the Finite Element Method. The validation of the numerical model is carried out from a database of available experimental results on masonry walls tested under cyclic lateral loading. Numerical results revealed that boundary conditions play a central role on the lateral behavior of masonry walls under in-plane loading and determine the influence of level of pre-compression as well as the reinforcement ratio on the wall strength. The lateral capacity of walls decreases with the increase of aspect ratio and with the decrease of pre-compression. Vertical steel bars appear to have almost no influence in the shear strength of masonry walls and horizontal reinforcement only increases the lateral strength of masonry walls if the shear response of the walls is determinant for failure, which is directly related to the boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper emphasizes the influence of micro mechanisms of failure of a cellular material on its phenomenological response. Most of the applications of cellular materials comprise a compression loading. Thus, the study focuses on the influence of the anisotropy in the mechanical behavior of cellular material under cyclic compression loadings. For this study, a Digital Image Correlation (DIC) technique (named Correli) was applied, as well as SEM (Scanning Electron Microscopy) images were analyzed. The experimental results are discussed in detail for a closed-cell rigid poly (vinyl chloride) (PVC) foam, showing stress-strain curves in different directions and why the material can be assumed as transversely isotropic. Besides, the present paper shows elastic and plastic Poisson's ratios measured in different planes, explaining why the plastic Poisson's ratios approach to zero. Yield fronts created by the compression loadings in different directions and the influence of spring-back phenomenon on hardening curves are commented, also.