976 resultados para cross sections
Resumo:
Reported herein are measured absolute single, double, and triple charge exchange (CE) cross sections for the highly charged ions (HCIs) Cq+ (q=5,6), Oq+ (q=6,7,8), and Neq+ (q=7,8) colliding with the molecular species H2O, CO, and CO2. Present data can be applied to interpreting observations of x-ray emissions from comets as they interact with the solar wind. As such, the ion impact energies of 7.0q keV (1.62–3.06 keV/amu) are representative of the fast solar wind, and data at 1.5q keV for O6+ (0.56 keV/amu) on CO and CO2 and 3.5q keV for O5+ (1.09 keV/amu) on CO provide checks of the energy dependence of the cross sections at intermediate and typical slow solar wind velocities. The HCIs are generated within a 14 GHz electron cyclotron resonance ion source. Absolute CE measurements are made using a retarding potential energy analyzer, with measurement of the target gas cell pressure and incident and final ion currents. Trends in the cross sections are discussed in light of the classical overbarrier model (OBM), extended OBM, and with recent results of the classical trajectory Monte Carlo theory.
Resumo:
X-ray emission from a comet was observed for the first time in 1996. One of the mechanisms believed to be contributing to this surprisingly strong emission is the interaction of highly charged solar wind ions with cometary gases. Reported herein are total absolute charge-exchange and normalized line-emission (X-ray) cross sections for collisions of high-charge state (+3 to +10) C, N, O, and Ne ions with the cometary species H2O and CO2. It is found that in several cases the double charge-exchange cross sections can be large, and in the case of C3+ they are equal to those for single charge exchange. Present results are compared to cross section values used in recent comet models. The importance of applying accurate cross sections, including double charge exchange, to obtain absolute line-emission intensities is emphasized.
Measurements of absolute, single charge-exchange cross sections of H+, He+ and He2+ with H2O and CO2
Resumo:
Absolute measurements have been made of single-electron charge-exchange cross sections of H+, He+, and He2+ in H2O and CO2 in the energy range 0.3-7.5 keV amu(-1). Collisions of this type occur in the interaction of solar wind ions with cometary gases and have been observed by the Giotto spacecraft using the Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) during a close encounter with comet Halley in 1986. Increases in the He+ ion density, and in the He2+ to H+ density ratio were reported by Shelley et al, and Fuselier et al. and were explained by charge exchange. However, the lack of reliable cross sections for this process made interpretation of the data difficult. New cross sections are presented and discussed in relation to the Giotto observations.
Resumo:
Using two complementary experimental methods, we have measured partial (mass-resolved) cross-sections for dissociative electron attachment to the molecule trifluoromethyl sulfurpentafluoride (SF5CF3) at the gas temperature T-G = 300 K over a broad range of electron energies (E = 0.001-12 eV). The absolute scale for these cross-sections was obtained with reference to the thermal (T = 300 K) rate coefficient for anion formation (8.0(3) x 10(-8) cm(3) s(-1)). Below 1 eV, SF5- is the dominant product anion and formed through the lowest anion state which cuts the neutral SF5CF3 potential close to the S-C equilibrium distance. The highly resolved laser photoelectron attachment data exhibit a downward Wigner cusp at 86meV, indicating that the nu(4)(alpha(1)) vibrational mode is important for the primary attachment dynamics. Both SF5- and F- anions are formed with similar yields through the first excited resonance located near 3.6eV. Towards higher energies, the anions CF3-, SF4-, and SF3- are also produced. Summation of the partial cross-sections yields a total absolute cross-section for anion formation over the energy range 0.001-12 eV. This is used to calculate the dependence of the rate coefficient for dissociative electron attachment over a broad range of electron temperatures for the fixed gas temperature T-G = 300 K; good agreement is found between the calculated values and those obtained in a drift tube experiment. In addition to the experimental work, semiempirical R-matrix calculations have been Carried out for the energy dependence of the cross-section for SF5- formation. The experimental findings are semi-quantitatively recovered. (C) 2008 Elsevier B.V. All rights reserved.