972 resultados para crop system
Resumo:
The paper examines the factor intensity and economic returns of alternate shrimp-crop and shrimp-salt farming in the coastal areas of Bangladesh. Data were collected from 30 shrimp-crop and 30 shrimp-salt farmers, 30 shrimp farmers and 30 rice farmers from three selected coastal districts of Bangladesh. Cobb-Douglas production function model was used to determine the effect of various factors on alternate shrimp-crop farming. The chosen variables were stocking of juveniles, paddy seed, labour, fertilizers, feed and farm size of respective type of farming. The results indicated that the production function exhibited increasing remrns to scale for alternate shrimp-rice, alternate shrimp-salt and year round shrimp farming while it indicated decreasing returns for year round rice farming. Economic analysis of same system of farming indicated that higher amount of input use produced higher level of yield, gross return and net return for each type of production system.
Resumo:
The paper deals with a technique to synchronize two crops, fish and makhana (Euryale ferox Salisb) in a pond. In such eco-friendly integration both crops are mutually benefited. Decomposed plant parts of makhana crop form organic matter that releases nutrients in the water to enhance plankton population. Organic detritus not only acts as food for bottom dwelling fishes (mrigal and common carp) but also provides a suitable substratum for the growth of zooplankton, insect larvae, nematodes and gastropods. Fishes contribute to the control of makhana pests. Their faecal matter acts as organic manure for makhana crop. Plankton population fluctuated between 1260 u/l to 4030 u/l in the control pond and 1630 u/l to 4722 u/l in the experimental pond. During the grand growth period of makhana crop (April to July) the dissolved oxygen content fluctuated between 5.02 mg/l to 6.68 mg/l in the covered areas and 6.04 mg/l to 6.92 mg/l in uncovered areas. Makhana leaves acting as blanket barrier over the water surface brought down the D.O. content in the covered areas of the pond. Free CO sub(2) content showed wider fluctuation in the experimental pond (25.2 mg/l to 30.9 mg/l) than in the control pond (25.1 mg/l to 28.6 mg/l). This could be due to decomposition of plant parts of the presiding crop lying as debris at the pond bottom. Autochthonous supply of nutrients enhanced the content of nitrogen, phosphorous and organic carbon in the soil of experimental pond. The experimental pond covering an area of 0.40 ha yielded 852 kg fish and 200 kg pops whereas the control pond covering the same area produced 777 kg fish only. The net profit per ha came out to be Rs.1,04,700 and Rs. 66,200 in integrated and non-integrated system respectively. Owing to crop diversification, the present integrated system was found to be more viable than the non-integrated system in terms of production and net profit.
Resumo:
Mixed rearing of tilapia (Genetically Improved Farmed Tilapia, GIFT) with shrimp (Penaeus monodon) in brackishwater rice-shrimp system was assessed for its impact on dry season's shrimp production. The experiment was conducted in pre-selected farmer's field located at Paikgacha Upazila of Khulna district and designed with three different densities (treatment) of GIFT, viz, 0.3, 0.4 and 0.5/m² with a constant stocking density of shrimp at 3/m². Each treatment had three replications. There had a set of control treatment where GIFT was not stocked. Results of the experiment revealed that tilapia did not exert any significant effect (p>0.05) on the water quality variables, even on survival rate of shrimp (p>0.05) under farm level condition in rice-shrimp rotational system, but a density dependent negative effect (P<0.05) on the growth of shrimp led apparently lower production rate of shrimp. Though tilapia provided the major augment of total production (p<0.05) in the respective treatments than in monoculture of shrimp, but not that of the economic return. However, economic loss due to sudden shrimp crop failure might be partially minimized by the tilapia crop.
Resumo:
The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite,as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water,heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.
Resumo:
The application of slurry nutrients to land can be associated with unintended losses to the environment depending on soil and weather conditions. Correct timing of slurry application, however, can increase plant nutrient uptake and reduce losses. A decision support system (DSS), which predicts optimum conditions for slurry spreading based on the Hybrid Soil Moisture Deficit (HSMD) model, was investigated for use as a policy tool. The DSS recommendations were compared to farmer perception of suitable conditions for slurry spreading for three soil drainage classes (well, moderate and poorly drained) to better understand on farm slurry management practices and to identify potential conflict with farmer opinion. Six farmers participated in a survey over two and a half years, during which they completed a daily diary, and their responses were compared to Soil Moisture Deficit (SMD) calculations and weather data recorded by on farm meteorological stations. The perception of land drainage quality differed between farmers and was related to their local knowledge and experience. It was found that the allocation of grass fields to HSMD drainage classes using a visual assessment method aligned farmer perception of drainage at the national scale. Farmer opinion corresponded to the theoretical understanding that slurry should not be applied when the soil is wetter than field capacity, i.e. when drainage can occur. While weather and soil conditions (especially trafficability) were the principal reasons given by farmers not to spread slurry, farm management practices (grazing and silage) and current Nitrates Directive policies (closed winter period for spreading) combined with limited storage capacities were obstacles to utilisation of slurry nutrients. Despite the slightly more restrictive advice of the DSS regarding the number of suitable spreading opportunities, the system has potential to address an information deficit that would help farmers to reduce nutrient losses and optimise plant nutrient uptake by improved slurry management. The DSS advice was in general agreement with the farmers and, therefore, they should not be resistant to adopting the tool for day to day management.
Resumo:
With biochar becoming an emerging soil amendment and a tool to mitigate climate change, there are only a few studies documenting its effects on trace element cycling in agriculture. Zn and Cu are deficient in many human diets, whilst exposures to As, Pb and Cd need to be decreased. Biochar has been shown to affect many of them mainly at a bench or greenhouse scale, but field research is not available. In our experiment we studied the impact of biochar, as well as its interactions with organic (compost and sewage sludge) and mineral fertilisers (NPK and nitrosulfate), on trace element mobility in a Mediterranean agricultural field (east of Madrid, Spain) cropped with barley. At harvesting time, we analysed the soluble fraction, the available fraction (assessed with the diffusive gradients in thin gels technique, DGT) and the concentration of trace elements in barley grain. No treatment was able to significantly increase Zn, Cu or Ni concentration in barley grain, limiting the application for cereal fortification. Biochar helped to reduce Cd and Pb in grain, whereas As concentration slightly increased. Overall biochar amendments demonstrated a potential to decrease Cd uptake in cereals, a substantial pathway of exposure in the Spanish population, whereas mineral fertilisation and sewage sludge increased grain Cd and Pb. In the soil, biochar helped to stabilise Pb and Cd, while marginally increasing As release/mobilisation. Some of the fertilisation practises or treatments increased toxic metals and As solubility in soil, but never to an extent high enough to be considered an environmental risk. Future research may try to fortify Zn, Cu and Ni using other combinations of organic amendments and different parent biomass to produce enriched biochars.
Resumo:
Aquaculture is one of the fastest growing food sectors in the world. Amongst the various branches of aquaculture, shrimp culture has expanded rapidly across the globe because of its faster growth rate, short culture period, high export value and demand in the International market. Indian shrimp farming has experienced phenomenal development over the decades due to its excellent commercial viability. Farmers have adopted a number of innovative technologies to improve the production and to maximize the returns per unit area. The culture methods adopted can be classified in to extensive, modified extensive and semi intensive based on the management strategies adopted in terms of pond size, stocking density, feeding and environmental control. In all these systems water exchanges through the natural tidal effects, or pump fed either from creek or from estuaries is a common practice. In all the cases, the systems are prone to epizootics due to the pathogen introduction through the incoming water, either brought by vectors, reservoir hosts, infected tissue debris and free pathogens themselves. In this scenario, measures to prevent the introduction of pathogen have become a necessity to protect the crop from the onslaught of diseases as well as to prevent the discharge of waste water in to the culture environment.The present thesis deals with Standardization of bioremediation technology for zero water exchange shrimp culture system
Resumo:
The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009.During phase 1 intense upwelling was observed along the southern transects (8◦N and 8.5◦N). The maximum chlorophyll a concentration (22.7 mg m −3) was observed in the coastal waters off Thiruvananthapuram (8.5◦N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8◦N transect. Along the 8.5◦N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9◦N transect (25 mg m−3) with Chaetoceros curvisetus as the dominant phytoplankton. Along the 8.5◦N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m−3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9◦N and 10◦N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.
Resumo:
Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.
Resumo:
Little is known about the residual effects of crop residue (CR) and phosphorus (P) application on the fallow vegetation following repeated cultivation of pearl millet [Pennisetum glaucum (L.) R. Br.] in the Sahel. The objective of this study, therefore, was (i) to measure residual effects of CR, mulched at annual rates of 0, 500, 1000 and 2000 kg CR ha^-1, broadcast P at 0 and 13 kg P ha^-1 and P placement at 0, 1, 3, 5 and 7 kg P ha^-1 on the herbaceous dry matter (HDM) 2 years after the end of the experiment and (ii) to test a remote sensing method for the quantitative estimation of HDM. Compared with unmulched plots, a doubling of HDM was measured in plots that had received at least 500 kg CR ha^-1. Previous broadcast P application led to HDM increases of 14% compared with unfertilised control plots, whereas no residual effects of P placement were detected. Crop residue and P treatments caused significant shifts in flora composition. Digital analysis of colour photographs taken of the fallow vegetation and the bare soil revealed that the number of normalised green band pixels averaged per plot was highly correlated with HDM (r=0.86) and that red band pixels were related to differences in soil surface crusting. Given the traditional use of fallow vegetation as fodder, the results strongly suggest that for the integrated farming systems of the West African Sahel, residual effects of soil amendments on the fallow vegetation should be included in any comprehensive analysis of treatment effects on the agro-pastoral system.
Resumo:
Urban and peri-urban agriculture (UPA) increasingly supplies food and non-food values to the rapidly growing West African cities. However, little is known about the resource use efficiencies in West African small-scale UPA crop and livestock production systems, and about the benefits that urban producers and retailers obtain from the cultivation and sale of UPA products. To contribute to filling this gap of knowledge, the studies comprising this doctoral thesis determined nutrient use efficiencies in representative urban crop and livestock production system in Niamey, Niger, and investigated potential health risks for consumers. Also assessed was the economic efficiency of urban farming activities. The field study, which was conducted during November 2005 to January 2008, quantified management-related horizontal nutrient flows in 10 vegetable gardens, 9 millet fields and 13 cattle and small ruminant production units. These farms, selected on the basis of a preceding study, represented the diversity of UPA crop and livestock production systems in Niamey. Based on the management intensity, the market orientation and especially the nutrient input to individual gardens and fields, these were categorized as high or low input systems. In the livestock study, high and low input cattle and small ruminant units were differentiated based on the amounts of total feed dry matter offered daily to the animals at the homestead. Additionally, economic returns to gardeners and market retailers cultivating and selling amaranth, lettuce, cabbage and tomato - four highly appreciated vegetables in Niamey were determined during a 6-months survey in forty gardens and five markets. For vegetable gardens and millet fields, significant differences in partial horizontal nutrient balances were determined for both management intensities. Per hectare, average annual partial balances for carbon (C), nitrogen (N), phosphorus (P) and potassium (K) amounted to 9936 kg C, 1133 kg N, 223 kg P and 312 kg K in high input vegetable gardens as opposed to 9580 kg C, 290 kg N, 125 kg P and 351 kg K in low input gardens. These surpluses were mainly explained by heavy use of mineral fertilizers and animal manure to which irrigation with nutrient rich wastewater added. In high input millet fields, annual surpluses of 259 kg C ha-1, 126 kg N ha-1, 20 kg P ha-1 and 0.4 kg K ha-1 were determined. Surpluses of 12 kg C ha-1, 17 kg N ha-1, and deficits of -3 kg P ha-1 and -3 kg K ha-1 were determined for low input millet fields. Here, carbon and nutrient inputs predominantly originated from livestock manure application through corralling of sheep, goats and cattle. In the livestock enterprises, N, P and K supplied by forages offered at the farm exceeded the animals’ requirements for maintenance and growth in high and low input sheep/goat as well as cattle units. The highest average growth rate determined in high input sheep/goat units was 104 g d-1 during the cool dry season, while a maximum average gain of 70 g d-1 was determined for low input sheep/goat units during the hot dry season. In low as well as in high input cattle units, animals lost weight during the hot dry season, and gained weight during the cool dry season. In all livestock units, conversion efficiencies for feeds offered at the homestead were rather poor, ranging from 13 to 42 kg dry matter (DM) per kg live weight gain (LWG) in cattle and from 16 to 43 kg DM kg-1 LWG in sheep/goats, pointing to a substantial waste of feeds and nutrients. The economic assessment of the production of four high value vegetables pointed to a low efficiency of N and P use in amaranth and lettuce production, causing low economic returns for these crops compared to tomato and cabbage to which inexpensive animal manure was applied. The net profit of market retailers depended on the type of vegetable marketed. In addition it depended on marketplace for amaranth and lettuce, and on season and marketplace for cabbage and tomato. Analysis of faecal pathogens in lettuce irrigated with river water and fertilized with animal manure indicated a substantial contamination by Salmonella spp. with 7.2 x 104 colony forming units (CFU) per 25 g of produce fresh matter, while counts of Escherichia coli averaged 3.9 x 104 CFU g-1. In lettuce irrigated with wastewater, Salmonella counts averaged 9.8 x 104 CFU 25 g-1 and E. coli counts were 0.6 x 104 CFU g-1; these values exceeded the tolerable contamination levels in vegetables of 10 CFU g-1 for E. coli and of 0 CFU 25 g-1 for Salmonella. Taken together, the results of this study indicate that Niamey’s UPA enterprises put environmental safety at risk since excess inputs of N, P and K to crop and livestock production units favour N volatilisation and groundwater pollution by nutrient leaching. However, more detailed studies are needed to corroborate these indications. Farmers’ revenues could be significantly increased if nutrient use efficiency in the different production (sub)systems was improved by better matching nutrient supply through fertilizers and feeds with the actual nutrient demands of plants and animals.
Resumo:
A field experiment was conducted under rainfed conditions in western Sudan at El-Obeid Research Farm and Eldemokeya Forest Reserve, North Kordofan State, during the growing seasons 2004/05 and 2005/06. The main objective was to investigate the soil physical and chemical properties and yield of groundnut (Arachis hypogea), sesame (Sesamum indicum) and roselle (Hibiscus sabdariffa) of an Acacia senegal agroforestry system in comparison with the sole cropping system. Data were recorded for soil physical and chemical properties, soil moisture content, number of pods per plant, fresh weight (kg ha^−1) and crop yield (kg ha^−1). The treatments were arranged in Randomized Complete Block Design (RCBD) and replicated four times. Significant differences (P < 0.05) were obtained for sand and silt content on both sites, while clay content was not significantly different on both sites. The nitrogen (N) and organic carbon were significantly (P < 0.05) higher in the intercropping system in Eldemokeya Forest Reserve compared with sole cropping. Soil organic carbon, N and pH were not significant on El-Obeid site. Yet the level of organic carbon, N, P and pH was higher in the intercropping system. Fresh weight was significantly different on both sites. The highest fresh weight was found in the intercropping system. Dry weights were significantly different for sesame and roselle on both sites, while groundnut was not significantly different. On both sites intercropping systems reduced groundnut, sesame and roselle yields by 26.3, 12 and 20.2%, respectively. The reduction in yield in intercropping plots could be attributed to high tree density, which resulted in water and light competition between trees and the associated crops.
Resumo:
Food farming in Oyo North, Nigeria is characterised by an increasing use of Intermediary Mode of Transportation (IMT) to ease inputs and outputs mobility and farm access. To assess the influence on food farmer’s productivity, a random sample of 230 respondents was selected and data collected on their socio-economic and farm specific characteristics. Descriptive statistics, Herfindhal Index and Technical Efficiency Approach were used to analyse the data. The results indicate that majority of food farmers were in their middle age with mean age of 50 years and most of them used one plot at a location between 5 and 10km to their village of residence. They acquired land by inheritance and practiced intensive crop diversification as risk management strategy. The transportation modes used in addition to walking include bicycle, motorcycle, and car with increasing trend in the use of motorcycle. The mean Technical Efficiency (TE) of food farmers was 0.82 with significant inefficiency effects. The inefficiency analysis indicates positive effect of distance, crop diversification and un-tarred type of road on farmer’s productivity, while poor level of education among farmers, use of bicycle; trekking and weekly working time negatively affect farmer’s efficiency. The negative effect of trekking and use of bicycle and the excess working time suggest the adoption of more IMT of motorized type to optimize farming time and increase farmer’s productivity.