972 resultados para critical pressure
Resumo:
In patients with acute respiratory distress syndrome, positive end-expiratory pressure is associated with alveolar recruitment and lung hyperinflation despite the administration of a low tidal volume. The best positive end-expiratory pressure should correspond to the best compromise between recruitment and distension, a condition that coincides with the best respiratory elastance.
Resumo:
Background: The objective of this study was to determine the early echocardiographic predictors of elevated left ventricular end-diastolic pressure (LVEDP) after a long follow-up period in the infarcted rat model.Material/Methods: Five days and three months after surgery, sham and infarcted animals were subjected to transthoracic echocardiography. Regression analysis and receiver-operating characteristic (ROC) curve were performed for predicting increased LVEDP 3 months after MI.Results: Among all of the variables, assessed 5 days after myocardial infarction, infarct size (OR: 0.760; CI 95% 0.563-0.900; p=0.005), end-systolic area (ESA) (OR: 0.761; Cl 95% 0.564-0.900; p=0.008), fractional area change (FAC) (OR: 0.771; CI 95% 0.574-0.907; p=0.003), and posterior wall-shortening velocity (PWSV) (OR: 0.703; CI 95% 0.502-0.860; p=0.048) were predictors of increased LVEDP. The LVEDP was 3.6 +/- 1.8 mmHg in the control group and 9.4 +/- 7.8 mmHg among the infarcted animals (p=0.007). Considering the critical value of predictor variables in inducing cardiac dysfunction, the cut-off value was 35% for infarct size, 0.33 cm(2) for ESA, 40% for FAC, and 26 mm/s for PWSV.Conclusions: Infarct size, FAC, ESA, and PWSV, assessed five days after myocardial infarction, can be used to estimate an increased LVEDP three months following the coronary occlusion.
Resumo:
Objectives. This paper attempts to provide critical perspectives on common in vitro research methodologies, including shear bond testing, wear testing, and load-to-failure tests. Origins of interest in high-quality laboratory data is reviewed, in vitro data is categorized into property and simulation protocols, and two approaches are suggested for establishing clinical validity. It is hoped that these insights will encourage further progress toward development of in vitro tests that are validated against clinical performance and/or by producing clinically validated failure or damage mechanisms.Materials and methods. Published shear and tensile bond data (macro and micro) is examined in light of published finite element analyses (FEA). This data is subjected to a Weibull scaling analysis to ascertain whether scaling is consistent with failure from the bonded interface or not. Wear tests results are presented in light of the damage mechanism(s) operating. Quantitative wear data is re-examined as being dependent upon contact pressure. Load-to-failure test results are re-analyzed by calculating contact stresses at failure for 119 tests from 54 publications over more than 25 years.Results. FEA analyses and reported failure modes (adhesive, mixed, cohesive) are consistent with failure not involving interfacial "shear stresses" as calculated in published work. Weibull scaling clearly suggests failure involving external surfaces of specimens, not interfacial origins. Contact stresses (pressures) are clearly an important variable in wear testing and are not well-controlled in published work. Load-to-failure tests create damage not seen clinically due to excessively high contact stresses. Most contact stresses in the 119 tests examined were calculated to be between 1000 MPa and 5000 MPa, whereas clinical contact stresses at wear facets have been measured not to exceed 40 MPa.Conclusions. Our community can do a much better job of designing in vitro tests that more closely simulate clinical conditions, especially when contact is involved. Journals are encouraged to thoughtfully consider a ban on publishing papers using bond tests and load-to-failure methods that are seriously flawed and have no clinical relevance. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new approach to the experimental determination of the critical temperature of metamagnetic samples with non-zero demagnetizing factors is presented. The method is applied to metamagnetic Ni(NO3)2·2H2O, allowing the conclusion that this salt exhibits a tricritical point. Pressure dependence of the critical temperature, and the existence of a pressure-induced metamagnetic transition are also reported. © 1986.
Resumo:
The aim of this study was to assess positive end-expiratory pressure (PEEP)-induced lung overdistension and alveolar recruitment in six patients with acute lung injury (ALI) using a computed tomographic (CT) scan method. Lung overdistension was first determined in six healthy volunteers in whom CT sections were obtained at FRC and at TLC with a positive airway pressure of 30 cm H2O. In patients, lung volumes were quantified by the analysis of the frequency distribution of CT numbers on the entire lung at zero end-expiratory pressure (ZEEP) and PEEP. In healthy volunteers at FRC, the distribution of the density histograms was monophasic with a peak at -791 ± 12 Hounsfield units (HU). The lowest CT number observed was -912 HU. At TLC, lung volume increased by 79 ± 35% and the peak CT number decreased to -886 ± 26 HU. More than 70% of the increase in lung volume was located below -900 HU, suggesting that this value can be considered as the threshold separating normal aeration from overdistension. In patients with ALI, at ZEEP the distribution of density histograms was either monophasic (n = 3) or biphasic (n = 3). The mean CT number was -319 ± 34 HU. At PEEP 13 ± 3 cm H2O, lung volume increased by 47 ± 19% whereas mean CT number decreased to -538 ± 171 HU. PEEP induced a mean alveolar recruitment of 320 ± 160 ml and a mean lung overdistension of 238 ± 320 ml. In conclusion, overdistended lung parenchyma of healthy volunteers is characterized by a CT number below -900 HU. This threshold can be used in patients with ALI for differentiating PEEP-induced alveolar recruitment from lung overdistension.
Resumo:
In this article, the authors measure throughput of sonic diamond microtubes and micronozzles that can work as passive gas flow controllers and flow meters under choking conditions. The behavior of the outlet pressure through the microdevices using an experimental setup with constant volume and constant temperature was determined in order to obtain the critical throughput, the critical mass flow rate, and the discharge coefficients of the diamond sonic microdevices. © 2007 American Vacuum Society.
Resumo:
BACKGROUND: In spontaneously breathing cardiac patients, pulmonary artery pressure (PAP) can be accurately estimated from the transthoracic Doppler study of pulmonary artery and tricuspid regurgitation blood flows. In critically ill patients on mechanical ventilation for acute lung injury, the interposition of gas between the probe and the heart renders the transthoracic approach problematic. This study was aimed at determining whether the transesophageal approach could offer an alternative. METHODS: Fifty-one consecutive sedated and ventilated patients with severe hypoxemia (arterial oxygen tension/fraction of inspired oxygen < 300) were prospectively studied. Mean PAP measured from the pulmonary artery catheter was compared with several indices characterizing pulmonary artery blood flow assessed using transesophageal echocardiography: preejection time, acceleration time, ejection duration, preejection time on ejection duration ratio, and acceleration time on ejection duration ratio. In a subgroup of 20 patients, systolic PAP measured from the pulmonary artery catheter immediately before withdrawal was compared with Doppler study of regurgitation tricuspid flow performed immediately after pulmonary artery catheter withdrawal using either the transthoracic or the transesophageal approach. RESULTS: Weak and clinically irrelevant correlations were found between mean PAP and indices of pulmonary artery flow. A statistically significant and clinically relevant correlation was found between systolic PAP and regurgitation tricuspid flow. In 3 patients (14%), pulmonary artery pressure could not be assessed echocardiographically. CONCLUSIONS: In hypoxemic patients on mechanical ventilation, mean PAP cannot be reliably estimated from indices characterizing pulmonary artery blood flow. Systolic PAP can be estimated from regurgitation tricuspid flow using either transthoracic or transesophageal approach. © 2008 American Society of Anesthesiologists, Inc.
Resumo:
High systolic blood pressure caused by endothelial dysfunction is a comorbidity of metabolic syndrome that is mediated by local inflammatory signals. Insulin-induced vasorelaxation due to endothelial nitric oxide synthase (eNOS) activation is highly dependent on the activation of the upstream insulin-stimulated serine/threonine kinase (AKT) and is severely impaired in obese, hypertensive rodents and humans. Neutralisation of circulating tumor necrosis factor-α (TNFα) with infliximab improves glucose homeostasis, but the consequences of this pharmacological strategy on systolic blood pressure and eNOS activation are unknown. To address this issue, we assessed the temporal changes in the systolic pressure of spontaneously hypertensive rats (SHR) treated with infliximab. We also assessed the activation of critical proteins that mediate insulin activity and TNFα-mediated insulin resistance in the aorta and cardiac left ventricle. Our data demonstrate that infliximab prevents the upregulation of both systolic pressure and left ventricle hypertrophy in SHR. These effects paralleled an increase in AKT/eNOS phosphorylation and a reduction in the phosphorylation of inhibitor of nuclear factor-κB (Iκβ) and c-Jun N-terminal kinase (JNK) in the aorta. Overall, our study revealed the cardiovascular benefits of infliximab in SHR. In addition, the present findings further suggested that the reduction of systolic pressure and left ventricle hypertrophy by infliximab are secondary effects to the reduction of endothelial inflammation and the recovery of AKT/eNOS pathway activation. © 2012 Elsevier B.V.
Resumo:
Objectives: The purpose of this study was to determine if intra-abdominal pressure (IAP) could predict acute renal injury (AKI) in the postoperative period of abdominal surgeries, and which would be its cutoff value. Patients and methods: A prospective observational study was conducted in the period from January 2010 to March 2011 in the Intensive Care Units (ICUs) of the University Hospital of Botucatu Medical School, UNESP. Consecutive patients undergoing abdominal surgery were included in the study. Initial evaluation, at admission in ICU, was performed in order to obtain demographic, clinical surgical and therapeutic data. Evaluation of IAP was obtained by the intravesical method, four times per day, and renal function was evaluated during the patient's stay in the ICU until discharge, death or occurrence of AKI. Results: A total of 60 patients were evaluated, 16 patients developed intra-abdominal hypertension (IAH), 45 developed an abnormal IAP (>7 mmHg) and 26 developed AKI. The first IAP at the time of admission to the ICU was able to predict the occurrence of AKI (area under the receiver-operating characteristic curve was 0.669; p=0.029) with the best cutoff point (by Youden index method) >= 7.68 mmHg, sensitivity of 87%, specificity of 46% at this point. The serial assessment of this parameter did not added prognostic value to initial evaluation. Conclusion: IAH was frequent in patients undergoing abdominal surgeries during ICU stay, and it predicted the occurrence of AKI. Serial assessments of IAP did not provided better discriminatory power than initial evaluation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical nonmicellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Concentration-dependent pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size, and ratio. The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.