995 resultados para crash data
Resumo:
Developing safe and sustainable road systems is a common goal in all countries. Applications to assist with road asset management and crash minimization are sought universally. This paper presents a data mining methodology using decision trees for modeling the crash proneness of road segments using available road and crash attributes. The models quantify the concept of crash proneness and demonstrate that road segments with only a few crashes have more in common with non-crash roads than roads with higher crash counts. This paper also examines ways of dealing with highly unbalanced data sets encountered in the study.
Resumo:
Road crashes cost world and Australian society a significant proportion of GDP, affecting productivity and causing significant suffering for communities and individuals. This paper presents a case study that generates data mining models that contribute to understanding of road crashes by allowing examination of the role of skid resistance (F60) and other road attributes in road crashes. Predictive data mining algorithms, primarily regression trees, were used to produce road segment crash count models from the road and traffic attributes of crash scenarios. The rules derived from the regression trees provide evidence of the significance of road attributes in contributing to crash, with a focus on the evaluation of skid resistance.
Resumo:
Road asset managers are seeking analysis of the whole road network to supplement statistical analyses of small subsets of homogeneous roadway. This study outlines the use of data mining capable of analyzing the wide range of situations found on the network, with a focus on the role of skid resistance in the cause of crashes. Results from the analyses show that on non-crash-prone roads with low crash rates, skid resistance contributes only in a minor way, whereas on high-crash roadways, skid resistance often contributes significantly in the calculation of the crash rate. The results provide evidence supporting a causal relationship between skid resistance and crashes and highlight the importance of the role of skid resistance in decision making in road asset management.
Resumo:
The occupant impact velocity (OIV) and acceleration severity index (ASI) are competing measures of crash severity used to assess occupant injury risk in full-scale crash tests involving roadside safety hardware, e.g. guardrail. Delta-V, or the maximum change in vehicle velocity, is the traditional metric of crash severity for real world crashes. This study compares the ability of the OIV, ASI, and delta-V to discriminate between serious and non-serious occupant injury in real world frontal collisions. Vehicle kinematics data from event data recorders (EDRs) were matched with detailed occupant injury information for 180 real world crashes. Cumulative probability of injury risk curves were generated using binary logistic regression for belted and unbelted data subsets. By comparing the available fit statistics and performing a separate ROC curve analysis, the more computationally intensive OIV and ASI were found to offer no significant predictive advantage over the simpler delta-V.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
There is consensus among community and road safety agencies that driver fatigue is a major road safety issue and it is well known that excessive fatigue is linked with an increased risk of a motor vehicle crash. Previous research has implicated a wide variety of factors involved in fatigue-related crashes and the effects of these various factors in regard to crash risk can be interpreted as causal (i.e. alcohol and/or drugs may induce fatigue states) or additive (e.g. where a lack of sleep is combined with alcohol). As such, the purpose of this investigation was to examine self-report data to determine whether there are any differences in the prevalence, crash characteristics, and travel patterns of males and females involved in a fatigue-related crash or close call event. Such research is important to understand how fatigue related incidents occur within the typical driving patterns of men and women and it provides a starting point in order to explore if males and females experience and understand the risk of diving when tired in the same way. A representative sample of (N = 1,600) residents living in the Australian Capital Territory (ACT) and New South Wales (NSW), Australia, were surveyed regarding their experience of fatigue and their involvement in fatigue-related crashes and close call incidents. Results revealed that over 35% of participants reported having had a close call or crash due to driving when tired in the five years prior to the study being conducted. In addition, the results obtained revealed a number of interesting characteristics that provide preliminary evidence that gender differences do exist when examining the prevalence, crash characteristics, and travel patterns of males and females involved in a fatigue-related crash or close call event. It is argued that the results obtained can provide particularly useful information for the refinement and further development of appropriate countermeasures that better target this complex issue.