981 resultados para cosmological parameters from LSS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper analyses the cosmological consequences of amodified theory of gravity whose action integral is built from a linear combination of the Ricci scalar R and a quadratic term in the covariant derivative of R. The resulting Friedmann equations are of the fifth-order in the Hubble function. These equations are solved numerically for a flat space section geometry and pressureless matter. The cosmological parameters of the higher-order model are fit using SN Ia data and X-ray gas mass fraction in galaxy clusters. The best-fit present-day t(0) values for the deceleration parameter, jerk and snap are given. The coupling constant beta of the model is not univocally determined by the data fit, but partially constrained by it. Density parameter Omega(m0) is also determined and shows weak correlation with the other parameters. The model allows for two possible future scenarios: there may be either an eternal expansion or a Rebouncing event depending on the set of values in the space of parameters. The analysis towards the past performed with the best-fit parameters shows that the model is not able to accommodate a matter-dominated stage required to the formation of structure.
Resumo:
By the end of the 19th century, geodesy has contributed greatly to the knowledge of regional tectonics and fault movement through its ability to measure, at sub-centimetre precision, the relative positions of points on the Earth’s surface. Nowadays the systematic analysis of geodetic measurements in active deformation regions represents therefore one of the most important tool in the study of crustal deformation over different temporal scales [e.g., Dixon, 1991]. This dissertation focuses on motion that can be observed geodetically with classical terrestrial position measurements, particularly triangulation and leveling observations. The work is divided into two sections: an overview of the principal methods for estimating longterm accumulation of elastic strain from terrestrial observations, and an overview of the principal methods for rigorously inverting surface coseismic deformation fields for source geometry with tests on synthetic deformation data sets and applications in two different tectonically active regions of the Italian peninsula. For the long-term accumulation of elastic strain analysis, triangulation data were available from a geodetic network across the Messina Straits area (southern Italy) for the period 1971 – 2004. From resulting angle changes, the shear strain rates as well as the orientation of the principal axes of the strain rate tensor were estimated. The computed average annual shear strain rates for the time period between 1971 and 2004 are γ˙1 = 113.89 ± 54.96 nanostrain/yr and γ˙2 = -23.38 ± 48.71 nanostrain/yr, with the orientation of the most extensional strain (θ) at N140.80° ± 19.55°E. These results suggests that the first-order strain field of the area is dominated by extension in the direction perpendicular to the trend of the Straits, sustaining the hypothesis that the Messina Straits could represents an area of active concentrated deformation. The orientation of θ agree well with GPS deformation estimates, calculated over shorter time interval, and is consistent with previous preliminary GPS estimates [D’Agostino and Selvaggi, 2004; Serpelloni et al., 2005] and is also similar to the direction of the 1908 (MW 7.1) earthquake slip vector [e.g., Boschi et al., 1989; Valensise and Pantosti, 1992; Pino et al., 2000; Amoruso et al., 2002]. Thus, the measured strain rate can be attributed to an active extension across the Messina Straits, corresponding to a relative extension rate ranges between < 1mm/yr and up to ~ 2 mm/yr, within the portion of the Straits covered by the triangulation network. These results are consistent with the hypothesis that the Messina Straits is an important active geological boundary between the Sicilian and the Calabrian domains and support previous preliminary GPS-based estimates of strain rates across the Straits, which show that the active deformation is distributed along a greater area. Finally, the preliminary dislocation modelling has shown that, although the current geodetic measurements do not resolve the geometry of the dislocation models, they solve well the rate of interseismic strain accumulation across the Messina Straits and give useful information about the locking the depth of the shear zone. Geodetic data, triangulation and leveling measurements of the 1976 Friuli (NE Italy) earthquake, were available for the inversion of coseismic source parameters. From observed angle and elevation changes, the source parameters of the seismic sequence were estimated in a join inversion using an algorithm called “simulated annealing”. The computed optimal uniform–slip elastic dislocation model consists of a 30° north-dipping shallow (depth 1.30 ± 0.75 km) fault plane with azimuth of 273° and accommodating reverse dextral slip of about 1.8 m. The hypocentral location and inferred fault plane of the main event are then consistent with the activation of Periadriatic overthrusts or other related thrust faults as the Gemona- Kobarid thrust. Then, the geodetic data set exclude the source solution of Aoudia et al. [2000], Peruzza et al. [2002] and Poli et al. [2002] that considers the Susans-Tricesimo thrust as the May 6 event. The best-fit source model is then more consistent with the solution of Pondrelli et al. [2001], which proposed the activation of other thrusts located more to the North of the Susans-Tricesimo thrust, probably on Periadriatic related thrust faults. The main characteristics of the leveling and triangulation data are then fit by the optimal single fault model, that is, these results are consistent with a first-order rupture process characterized by a progressive rupture of a single fault system. A single uniform-slip fault model seems to not reproduce some minor complexities of the observations, and some residual signals that are not modelled by the optimal single-fault plane solution, were observed. In fact, the single fault plane model does not reproduce some minor features of the leveling deformation field along the route 36 south of the main uplift peak, that is, a second fault seems to be necessary to reproduce these residual signals. By assuming movements along some mapped thrust located southward of the inferred optimal single-plane solution, the residual signal has been successfully modelled. In summary, the inversion results presented in this Thesis, are consistent with the activation of some Periadriatic related thrust for the main events of the sequence, and with a minor importance of the southward thrust systems of the middle Tagliamento plain.
Resumo:
The goal of this thesis is to analyze the possibility of using early-type galaxies to place evolutionary and cosmological constraints, by both disentangling what is the main driver of ETGs evolution between mass and environment, and developing a technique to constrain H(z) and the cosmological parameters studying the ETGs age-redshift relation. The (U-V) rest-frame color distribution is studied as a function of mass and environment for two sample of ETGs up to z=1, extracted from the zCOSMOS survey with a new selection criterion. The color distributions and the slopes of the color-mass and color-environment relations are studied, finding a strong dependence on mass and a minor dependence on environment. The spectral analysis performed on the D4000 and Hδ features gives results validating the previous analysis. The main driver of galaxy evolution is found to be the galaxy mass, the environment playing a subdominant but non negligible role. The age distribution of ETGs is also analyzed as a function of mass, providing strong evidences supporting a downsizing scenario. The possibility of setting cosmological constraints studying the age-redshift relation is studied, discussing the relative degeneracies and model dependencies. A new approach is developed, aiming to minimize the impact of systematics on the “cosmic chronometer” method. Analyzing theoretical models, it is demonstrated that the D4000 is a feature correlated almost linearly with age at fixed metallicity, depending only minorly on the models assumed or on the SFH chosen. The analysis of a SDSS sample of ETGs shows that it is possible to use the differential D4000 evolution of the galaxies to set constraints to cosmological parameters in an almost model-independent way. Values of the Hubble constant and of the dark energy EoS parameter are found, which are not only fully compatible, but also with a comparable error budget with the latest results.
Resumo:
Redshift Space Distortions (RSD) are an apparent anisotropy in the distribution of galaxies due to their peculiar motion. These features are imprinted in the correlation function of galaxies, which describes how these structures distribute around each other. RSD can be represented by a distortions parameter $\beta$, which is strictly related to the growth of cosmic structures. For this reason, measurements of RSD can be exploited to give constraints on the cosmological parameters, such us for example the neutrino mass. Neutrinos are neutral subatomic particles that come with three flavours, the electron, the muon and the tau neutrino. Their mass differences can be measured in the oscillation experiments. Information on the absolute scale of neutrino mass can come from cosmology, since neutrinos leave a characteristic imprint on the large scale structure of the universe. The aim of this thesis is to provide constraints on the accuracy with which neutrino mass can be estimated when expoiting measurements of RSD. In particular we want to describe how the error on the neutrino mass estimate depends on three fundamental parameters of a galaxy redshift survey: the density of the catalogue, the bias of the sample considered and the volume observed. In doing this we make use of the BASICC Simulation from which we extract a series of dark matter halo catalogues, characterized by different value of bias, density and volume. This mock data are analysed via a Markov Chain Monte Carlo procedure, in order to estimate the neutrino mass fraction, using the software package CosmoMC, which has been conveniently modified. In this way we are able to extract a fitting formula describing our measurements, which can be used to forecast the precision reachable in future surveys like Euclid, using this kind of observations.
Resumo:
Time-averaged discharge rates (TADR) were calculated for five lava flows at Pacaya Volcano (Guatemala), using an adapted version of a previously developed satellite-based model. Imagery acquired during periods of effusive activity between the years 2000 and 2010 were obtained from two sensors of differing temporal and spatial resolutions; the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Geostationary Operational Environmental Satellites (GOES) Imager. A total of 2873 MODIS and 2642 GOES images were searched manually for volcanic “hot spots”. It was found that MODIS imagery, with superior spatial resolution, produced better results than GOES imagery, so only MODIS data were used for quantitative analyses. Spectral radiances were transformed into TADR via two methods; first, by best-fitting some of the parameters (i.e. density, vesicularity, crystal content, temperature change) of the TADR estimation model to match flow volumes previously estimated from ground surveys and aerial photographs, and second by measuring those parameters from lava samples to make independent estimates. A relatively stable relationship was defined using the second method, which suggests the possibility of estimating lava discharge rates in near-real-time during future volcanic crises at Pacaya.
Resumo:
The distribution of the number of heterozygous loci in two randomly chosen gametes or in a random diploid zygote provides information regarding the nonrandom association of alleles among different genetic loci. Two alternative statistics may be employed for detection of nonrandom association of genes of different loci when observations are made on these distributions: observed variance of the number of heterozygous loci (s2k) and a goodness-of-fit criterion (X2) to contrast the observed distribution with that expected under the hypothesis of random association of genes. It is shown, by simulation, that s2k is statistically more efficient than X2 to detect a given extent of nonrandom association. Asymptotic normality of s2k is justified, and X2 is shown to follow a chi-square (chi 2) distribution with partial loss of degrees of freedom arising because of estimation of parameters from the marginal gene frequency data. Whenever direct evaluations of linkage disequilibrium values are possible, tests based on maximum likelihood estimators of linkage disequilibria require a smaller sample size (number of zygotes or gametes) to detect a given level of nonrandom association in comparison with that required if such tests are conducted on the basis of s2k. Summarization of multilocus genotype (or haplotype) data, into the different number of heterozygous loci classes, thus, amounts to appreciable loss of information.
Resumo:
The aim of this study was to analyse the effects of climatic factors (i.e. monthly mean temperature and total precipitation) on radial growth (earlywood width, latewood width, and total ringwidth) and on latewood stable carbon isotope composition in a pedunculate oak (Quercus robur L) stand in northeastern Hungary. Earlywood widths showed the weakest common variance and lack of statistically significant relationship to monthly precipitation and temperature. Latewood width showed the strongest common chronological signal. Correlation analysis with the monthly climate series pointed out the strongest positive/negative correlation with June precipitation for latewood width/stable carbon isotope ratio. These parameters shared the strongest climatic response also for seasonal scale since the highest correlation coefficients, 0.49 and -0.62 for latewood width and stable carbon isotope ratio, respectively, were obtained for both with a 10-month precipitation total (from previous November to current August of the growing season). A combined parameter, derived as difference between latewood width and stable carbon isotope indices showed improved statistical relationship compared to the hydroclimatic calibration target both for local and regional spatial scales. Spatial correlation analysis indicated that the hydroclimatic signal encoded in these moisture sensitive tree-ring parameters from Bakta Forest is expected to be representative for the northeastern Carpathians and for the large part of the Great Hungarian Plain. In addition, the hydroclimatic signal of latewood width chronology was compared to three independent records. Results showed that neither the strength nor the rank of the similarity of the local hydroclimate signals were stable throughout the past two centuries. Future palaeo(hydro)climatological efforts targeting the Carpathian(-Balkan) region are recommended to track carefully the spatial domains for which a given, local, proxy-derived hydroclimate reconstruction might provide useful information.
The impact of common versus separate estimation of orbit parameters on GRACE gravity field solutions
Resumo:
Gravity field parameters are usually determined from observations of the GRACE satellite mission together with arc-specific parameters in a generalized orbit determination process. When separating the estimation of gravity field parameters from the determination of the satellites’ orbits, correlations between orbit parameters and gravity field coefficients are ignored and the latter parameters are biased towards the a priori force model. We are thus confronted with a kind of hidden regularization. To decipher the underlying mechanisms, the Celestial Mechanics Approach is complemented by tools to modify the impact of the pseudo-stochastic arc-specific parameters on the normal equations level and to efficiently generate ensembles of solutions. By introducing a time variable a priori model and solving for hourly pseudo-stochastic accelerations, a significant reduction of noisy striping in the monthly solutions can be achieved. Setting up more frequent pseudo-stochastic parameters results in a further reduction of the noise, but also in a notable damping of the observed geophysical signals. To quantify the effect of the a priori model on the monthly solutions, the process of fixing the orbit parameters is replaced by an equivalent introduction of special pseudo-observations, i.e., by explicit regularization. The contribution of the thereby introduced a priori information is determined by a contribution analysis. The presented mechanism is valid universally. It may be used to separate any subset of parameters by pseudo-observations of a special design and to quantify the damage imposed on the solution.
Resumo:
An isobathic transect of marine surface sediments from 1°N to 28°S off southwest Africa was used to further evaluate the potential of the chain length distribution and carbon stable isotope composition of higher plant n-alkanes as proxies for continental vegetation and climate conditions. We found a strong increase in the n-C29-33 weighted mean average d13C values from -33 per mil near the equator to around -26 per mil further south. Additionally, C25-35n-alkanes reveal a southward trend of increasing average chain length from 30.0 to 30.5. The data reflect the changing contribution of plants employing different photosynthetic pathways (C3 and C4) and/or being differently influenced by the environmental conditions of their habitat. The C4 plant proportions calculated from the data (ca. 20% for rivers draining the rainforest, to ca. 70% at higher latitude) correspond to the C4 plant abundance in continental catchment areas postulated by considering prevailing wind systems and river outflows. Furthermore, the C4 plant contribution to the sediments correlates with the mean annual precipitation and aridity at selected continental locations in the postulated catchment areas, suggesting that the C4 plant fraction in marine sediments can be used to assess these environmental parameters.
Resumo:
We propose a linear regression method for estimating Weibull parameters from life tests. The method uses stochastic models of the unreliability at each failure instant. As a result, a heteroscedastic regression problem arises that is solved by weighted least squares minimization. The main feature of our method is an innovative s-normalization of the failure data models, to obtain analytic expressions of centers and weights for the regression. The method has been Monte Carlo contrasted with Benard?s approximation, and Maximum Likelihood Estimation; and it has the highest global scores for its robustness, and performance.
Resumo:
Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze commercial solar panel performance (i.e., the current-voltage–I-V–curve) at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer’s datasheet.
Resumo:
Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze the performance (i.e., the I - V curve) of a commercial solar panel at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer's datasheet.
Resumo:
Clusters of galaxies are the most massive and large gravitationally bounded systems in the whole Universe. Their study is of fundamental importance to constrain cosmological parameters and to obtain informations regarding various kind of emission in different wavebands. In particular, in the radio domain, beside the diffuse emission, the study is focused on the radio galaxies emission. Radio galaxies in clusters can have peculiar morphology, since they interact with the intracluster medium (ICM) in which they are embedded. Particularly, in this thesis we focused our attention on the so-called Narrow-Angle Tailed radio galaxies (NAT), which present radio jets that are bent at extreme angle, up to 90 degrees, from their original orientation. Some NAT show a narrow extended structure and the two radio tails are not resolved even with high resolution radio observations. An example is provided by the source IC310, in the Perseus Cluster, whose structure has been recently interpreted as due to Doppler boosting effects of a relativistic jet oriented at a small angle with respect to the line of sight. If the structure is due to relativistic effects, this implies that the jets are relativistic at about 400 kpc from the core, but this is in contrast with unified models, which predict that for low-power radio source (NAT are classified as FRI radio galaxies) the jets decelerate to sub-relativistic speed within a few kpc from the core. To investigate this scientific topic, in this thesis we have analyzed the innermost structure of a sample of eleven radio galaxies showing a very narrow NAT structure. We can conclude that the structure of these radio galaxies is different from that of IC310. These radio galaxies are indeed strongly influenced by environmental effects and are similar to classical NAT sources.