948 resultados para cosmological parameters from CMBR
Resumo:
Tämän tutkimuksen tavoitteena oli selvittää tilalla määritetyn hyvinvoinnin yhteyttä emakoiden tuotantotuloksiin. Hyvinvointia arvioitiin suomalaisen hyvinvointi-indeksin, A-indeksi, avulla. Tuotantotuloksina käytettiin kahta erilaista tuotosaineistoa, jotka molemmat pohjautuivat kansalliseen tuotosseuranta aineistoon. Hyvinvointimääritykset tehtiin 30 porsastuotantosikalassa maaliskuun 2007 aikana. A-indeksi koostuu kuudesta kategoriasta ’liikkumismahdollisuudet’, ’alustan ominaisuudet’, ’sosiaaliset kontaktit’, ’valo, ilma ja melu’, ’ruokinta ja veden saanti’ sekä ’eläinten terveys ja hoidon taso’. Jokaisessa kategoriassa on 3-10 pääosin ympäristöperäistä muuttujaa, jotka vaihtelevat osastoittain. Maksimipistemäärä osastolle on 100. Hyvinvointimittaukset tehtiin porsitus-, tiineytys- ja joutilasosastoilla. Erillisten tiineytysosastojen pienen lukumäärän takia (n=7) tilakohtaiset tiineytys- ja joutilasosastopisteet yhdistettiin ja keskiarvoja käytettiin analyyseissä. Yhteyksiä tuotokseen tutkittiin kahden eri aineiston avulla 1) Tilaraportti aineisto (n=29) muodostuu muokkaamattomista tila- ja tuotostuloksista tilavierailua edeltävän vuoden ajalta, 2) POTSIaineisto (n=30) muodostuu POTSI-ohjelmalla (MTT) muokatusta tuotantoaineistosta, joka sisältää managementtiryhmän (tila, vuosi, vuodenaika) vaikutuksen ensikoiden ja emakoiden pahnuekohtaiseen tuotokseen. Yhteyksiä analysointiin korrelaatio- ja regressioanalyysien avulla. Vaikka osallistuminen tutkimukseen oli vapaaehtoista, molempien tuotantoaineistojen perusteella tutkimustilat edustavat keskituottoista suomalaista sikatilaa. A-indeksin kokonaispisteet vaihtelivat välillä 37,5–64,0 porsitusosastolla ja 39,5–83,5 joutilasosastolla. Tilaraporttiaineistoa käytettäessä paremmat pisteet porsitusosaston ’eläinten terveys ja hoidon taso’ -kategoriasta lyhensivät eläinten lisääntymissykliä, lisäsivät syntyvien pahnueiden ja porsaiden määrää sekä alensivat kuolleena syntyneiden lukumäärää. Regressiomallin mukaan ’eläinten terveys ja hoidon taso’ -kategoria selitti syntyvien porsaiden lukumäärän, porsimisvälin pituuden sekä keskiporsimiskerran vaihtelua. Paremmat pisteet joutilasosaston ’liikkumismahdollisuudet’ kategoriasta alensivat syntyneiden pahnueiden sekä syntyneiden että vieroitettujen porsaiden lukumäärää. Regressiomallin mukaan ensikkopahnueiden osuus ja ”liikkumismahdollisuudet” kategorian pisteet selittivät vieroitettujen porsaiden lukumäärän vaihtelua. POTSI-aineiston yhteydessä kuolleena syntyneiden porsaiden lukumäärän aleneminen oli ensikoilla yhteydessä parempiin porsitusosaston ’sosiaalisiin kontakteihin’ ja emakoilla puolestaan joutilasosaston parempiin ’eläinten terveys ja hoidon taso’ pisteisiin. Kahden eri tuotantoaineiston avulla saadut tulokset erosivat toisistaan. Seuraavissa tutkimuksissa onkin suositeltavampaa käyttää Tilaraporttiaineistoja, joissa tuotokset ilmoitetaan vuosikohtaisina. Tämän tutkimuksen perusteella hyvinvoinnilla ja tuotoksella on yhteyksiä, joilla on myös merkittävää taloudellista vaikutusta. Erityisesti hyvä eläinten hoito ja eläinten terveys lisäävät tuotettujen porsaiden määrää ja lyhentävät lisääntymiskiertoa. Erityishuomiota tulee kiinnittää vapaana olevien joutilaiden emakoiden sosiaaliseen stressiin ja rehunsaannin varmistamiseen kaikille yksilöille.
Resumo:
Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.
Resumo:
Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.
Resumo:
p-Benzoquinone and its halogen substituted derivatives are known to have differing reactivities in the triplet excited state. While bromanil catalyzes the reduction of octaethylporphyrin most efficiently among the halogenated p-benzoquinones, the reaction does not take place in presence of the unsubstituted p-benzoquinone (T. Nakano and Y. Mori, Bull. Chem. Soc. Jpn., 67, 2627 (1994)). Understanding of such differences requires a detailed knowledge of the triplet state structures, normal mode compositions and excited state dynamics. In this paper, we apply a recently presented scheme (M. Puranik, S. Umapathy, J. G. Snijders, and J. Chandrasekhar, J. Chem, Phys., 115, 6106 (2001)) that combines parameters from experiment and computation in a wave packet dynamics simulation to the triplet states of p-benzoquinone and bromanil. The absorption and resonance Raman spectra of both the molecules have been simulated. The normal mode compositions and mode specific excited state displacements have been presented and compared. Time-dependent evolution of the absorption and Raman overlaps for all the observed modes has been discussed in detail. In p-benzoquinone, the initial dynamics is along the C=C stretching and C-H bending modes whereas in bromanil nearly equal displacements are observed along all the stretching coordinates.
Resumo:
Atmospheric perturbations due to the annular solar eclipse were monitored to understand its influence on the meteorological parameters from surface to the lower stratosphere. A strong inversion at 13 km and an abnormal warming in the upper troposphere were noticed on the eclipse day. A decrease in tropopause height associated with increase in temperature caused anomalous warming. Considerable attenuation of incoming solar radiation resulted in abrupt increase of air temperature during the next 24 h followed by sharp decrease in relative humidity. The time lag is attributed to the distance from the totality and the response time between tropopause and surface layer. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a comprehensive and robust strategy for the estimation of battery model parameters from noise corrupted data. The deficiencies of the existing methods for parameter estimation are studied and the proposed parameter estimation strategy improves on earlier methods by working optimally for low as well as high discharge currents, providing accurate estimates even under high levels of noise, and with a wide range of initial values. Testing on different data sets confirms the performance of the proposed parameter estimation strategy.
Resumo:
This thesis consists of three separate studies of roles that black holes might play in our universe.
In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.
In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.
In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.
Resumo:
This thesis presents investigations in four areas of theoretical astrophysics: the production of sterile neutrino dark matter in the early Universe, the evolution of small-scale baryon perturbations during the epoch of cosmological recombination, the effect of primordial magnetic fields on the redshifted 21-cm emission from the pre-reionization era, and the nonlinear stability of tidally deformed neutron stars.
In the first part of the thesis, we study the asymmetry-driven resonant production of 7 keV-scale sterile neutrino dark matter in the primordial Universe at temperatures T >~ 100 MeV. We report final DM phase space densities that are robust to uncertainties in the nature of the quark-hadron transition. We give transfer functions for cosmological density fluctuations that are useful for N-body simulations. We also provide a public code for the production calculation.
In the second part of the thesis, we study the instability of small-scale baryon pressure sound waves during cosmological recombination. We show that for relevant wavenumbers, inhomogenous recombination is driven by the transport of ionizing continuum and Lyman-alpha photons. We find a maximum growth factor less than ≈ 1.2 in 107 random realizations of initial conditions. The low growth factors are due to the relatively short duration of the recombination epoch.
In the third part of the thesis, we propose a method of measuring weak magnetic fields, of order 10-19 G (or 10-21 G if scaled to the present day), with large coherence lengths in the inter galactic medium prior to and during the epoch of cosmic reionization. The method utilizes the Larmor precession of spin-polarized neutral hydrogen in the triplet state of the hyperfine transition. We perform detailed calculations of the microphysics behind this effect, and take into account all the processes that affect the hyperfine transition, including radiative decays, collisions, and optical pumping by Lyman-alpha photons.
In the final part of the thesis, we study the non-linear effects of tidal deformations of neutron stars (NS) in a compact binary. We compute the largest three- and four-mode couplings among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We demonstrate the near-exact cancellation of their effects, and resolve the question of the stability of the tidally deformed NS to leading order. This result is significant for the extraction of binary parameters from gravitational wave observations.
Resumo:
We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L∞. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.
Resumo:
Em modelos inflacionários não-isentrópicos, a contribuição para o espectro de potência é essencialmente proveniente das flutuações térmicas. Esta é a situação oposta a da inflação fria, onde as flutuações de origem quântica fornecem toda contribuição para o espectro. Pouca ou nenhuma importância tem sido dada ao regime intermediário, onde as flutuações quânticas e térmicas são comparáveis. Neste trabalho, tendo como bases a inflação não-isentrópica e a inflação estocástica de Starobinsky, propomos um quadro geral onde é possível tratar de maneira conjunta, explícita e transparente tanto a contribuição de origem quântica quanto a de origem térmica para o espectro de potência do inflaton.O espectro de potência geral obtido reproduz, nos limites apropriados, todos os resultados caracteríssticos tanto da inflação fria, quanto da inflação não-isentrópica. Com o objetivo de checar a consistência e a viabilidade do modelo, foram usados os típicos potenciais polinomiais característicos da inflação caótica. Apesar destes potenciais já estarem praticamente descartados pelas observações no contexto da inflação fria, surpreendentemente pudemos constatar que efeitos dissipativos e de temperatura são capazes de restaurar a compatibilidade dos mesmos com os parâmetros cosmológicos inferidos através dos dados do nono ano do WMAP. Através da inserção de tais efeitos na dinâmica de grandes escalas do inflaton, estendemos ainda alguns resultados relacionados ao cenário conhecido como inflação eterna.
Resumo:
This paper describes an interactive system for quickly modelling 3D body shapes from a single image. It provides the user with a convenient way to obtain their 3D body shapes so as to try on virtual garments online. For the ease of use, we first introduce a novel interface for users to conveniently extract anthropometric measurements from a single photo, while using readily available scene cues for automatic image rectification. Then, we propose a unified probabilistic framework using Gaussian processes, which predict the body parameters from input measurements while correcting the aspect ratio ambiguity resulting from photo rectification. Extensive experiments and user studies have supported the efficacy of our system. This system is now being exploited commercially online1. © 2011. The copyright of this document resides with its authors.
Resumo:
A computer program, QtUCP, has been developed based on several well-established algorithms using GCC 4.0 and Qt (R) 4.0 (Open Source Edition) under Debian GNU/Linux 4.0r0. it can determine the unit-cell parameters from an electron diffraction tilt series obtained from both double-tilt and rotation-tilt holders. In this approach, two or more primitive cells of the reciprocal lattice are determined from experimental data, in the meantime, the measurement errors of the tilt angles are checked and minimized. Subsequently, the derived primitive cells are converted into the reduced form and then transformed into the reduced direct primitive cell. Finally all the patterns are indexed and the least-squares refinement is employed to obtain the optimized results of the lattice parameters. Finally, two examples are given to show the application of the program, one is based on the experiment, the other is from the simulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Log-polar image architectures, motivated by the structure of the human visual field, have long been investigated in computer vision for use in estimating motion parameters from an optical flow vector field. Practical problems with this approach have been: (i) dependence on assumed alignment of the visual and motion axes; (ii) sensitivity to occlusion form moving and stationary objects in the central visual field, where much of the numerical sensitivity is concentrated; and (iii) inaccuracy of the log-polar architecture (which is an approximation to the central 20°) for wide-field biological vision. In the present paper, we show that an algorithm based on generalization of the log-polar architecture; termed the log-dipolar sensor, provides a large improvement in performance relative to the usual log-polar sampling. Specifically, our algorithm: (i) is tolerant of large misalignmnet of the optical and motion axes; (ii) is insensitive to significant occlusion by objects of unknown motion; and (iii) represents a more correct analogy to the wide-field structure of human vision. Using the Helmholtz-Hodge decomposition to estimate the optical flow vector field on a log-dipolar sensor, we demonstrate these advantages, using synthetic optical flow maps as well as natural image sequences.
Resumo:
In the biological sciences, stereological techniques are frequently used to infer changes in structural parameters (volume fraction, for example) between samples from different populations or subject to differing treatment regimes. Non-homogeneity of these parameters is virtually guaranteed, both between experimental animals and within the organ under consideration. A two-stage strategy is then desirable, the first stage involving unbiased estimation of the required parameter, separately for each experimental unit, the latter being defined as a subset of the organ for which homogeneity can reasonably be assumed. In the second stage, these point estimates are used as data inputs to a hierarchical analysis of variance, to distinguish treatment effects from variability between animals, for example. Techniques are therefore required for unbiased estimation of parameters from potentially small numbers of sample profiles. This paper derives unbiased estimates of linear properties in one special case—the sampling of spherical particles by transmission microscopy, when the section thickness is not negligible and the resulting circular profiles are subject to lower truncation. The derivation uses the general integral equation formulation of Nicholson (1970); the resulting formulae are simplified, algebraically, and their efficient computation discussed. Bias arising from variability in slice thickness is shown to be negligible in typical cases. The strategy is illustrated for data examining the effects, on the secondary lysosomes in the digestive cells, of exposure of the common mussel to hydrocarbons. Prolonged exposure, at 30 μg 1−1 total oil-derived hydrocarbons, is seen to increase the average volume of a lysosome, and the volume fraction that lysosomes occupy, but to reduce their number.