716 resultados para cosmic spherule
Resumo:
The properties of galactic cosmic rays are investigated with the KASCADE-Grande experiment in the energy range between 10(14) and 10(18) eV. Recent results are discussed. They concern mainly the all-particle energy spectrum and the elemental composition of cosmic rays. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Resumo:
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz`min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved.
Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory
Resumo:
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E(-gamma) with index gamma = 3 3 below the ankle which is measured at log(10)(E(ankle)/eV) = 18 6 Above the ankle the spectrum is described by a power law with index 2 6 followed by a flux suppression, above about log(10)(E/eV) = 19 5, detected with high statistical significance (C) 2010 Elsevier B V All rights reserved
Resumo:
Top-down models for the origin of ultra high energy cosmic rays (UHECR's) propose that these events are the decay products of relic superheavy metastable particles, usually called X particles. These particles can be produced in the reheating period following the inflationary epoch of the early Universe. We obtain constraints on some parameters such as the lifetime and direct couplings of the X-particle to the inflaton field from the requirement that they are responsible for the observed UHECR flux.
Resumo:
We derive constraints on a simple quintessential inflation model, based on a spontaneously broken Phi(4) theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and by galaxy clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of symmetry breaking must be larger than about 3 Planck masses in order for inflation to generate acceptable values of the scalar spectral index and of the tensor-to-scalar ratio. We also show that the resulting quintessence equation of state can evolve rapidly at recent times and hence can potentially be distinguished from a simple cosmological constant in this parameter regime.
Resumo:
In this work, we present the gravitational field generated by a cosmic string carrying a timelike current in the scalar-tensor gravities. The mechanism of formation and evolution of wakes is fully investigated in this framework. We show explicitly that the inclusion of electromagnetic properties for the string induces logarithmic divergences in the accretion problem.
Resumo:
We discuss modified gravity which includes negative and positive powers of curvature and provides gravitational dark energy. It is shown that in GR plus a term containing a negative power of curvature, cosmic speed-up may be achieved while the effective phantom phase (with w less than -1) follows when such a term contains a fractional positive power of curvature. Minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fluid may describe the (effective phantom) dark energy. The account of the R(2) term (consistent modified gravity) may help to escape cosmic doomsday.
Resumo:
We argue that the hypothesis of magnetic monopoles as being the highest energy cosmic ray events is unlikely. For reasonable values of the monopole mass both the observed spectrum and the arrival direction disagree with observation. Our conclusions could be evaded if (i) monopoles are accelerated in the extragalactic magnetic fields to energies much above the observed energies and (ii) the amount of energy that the monopole yields to the shower is small. (C) 1999 Elsevier B.V. B.V.
Resumo:
Recent studies of the delectability of the cosmic topology of nearly flat universes have often concentrated on the range of values of Omega(0) given by current observations. Here we study the consequences of taking a range of bounds satisfying \Omega(0) - 1\ much less than 1, which include those expected from future observations such as the Planck mission, as well as those predicted by inflationary models. We show that in this limit, a generic detectable non-flat manifold is locally indistinguishable from either a cylindrical (R-2 X S) or toroidal (R x T-2) manifold, irrespective of its global shape, with the former being more likely. Importantly, this is compatible with some recent indications of the alignment of the quadrupole and octupole moments, based on the analysis of the first year WMAP data. It also implies that in this limit an observer would not be able to distinguish topologically whether the universe is spherical, hyperbolic or flat. By severely restricting the expected topological signatures of detectable isometries, our results provide an effective theoretical framework for interpreting cosmological observations, and can be used to confine the parameter spaces which realistic search strategies, such as the 'circles in the sky' method, need to concentrate on.
Resumo:
Top-down models assume that the still unexplained ultrahigh energy cosmic rays (UHECR's) are the decay products of superheavy particles. Such particles may have been produced by one of the post-inflationary reheating mechanisms and may account for a fraction of the cold dark matter. In this paper, we assess the phenomenological applicability of the simplest instant preheating framework not to describe a reheating process, but as a mechanism to generate relic supermassive particles as possible sources of UHECR's. We use cosmic ray flux and cold dark matter observational data to constrain the parameters of the model.
Resumo:
Chiral cosmic strings are naturally produced at the end of D-term inflation and they present very interesting cosmological consequences. In this work, we investigate the formation and evolution of wakes by a chiral string. We show that, for cold dark matter, the mechanism of forming wakes by a chiral string is similar to the mechanism by an ordinary string.
Resumo:
We investigate an alternative compactification of extra dimensions using local cosmic string in the Brans-Dicke gravity framework. In the context of dynamical systems it is possible to show that there exist a stable field configuration for the Einstein-Brans-Dicke equations. We explore the analogies between this particular model and the Randall-Sundrum scenario.
Resumo:
We investigate the nature of ordinary cosmic vortices in some scalar-tensor extensions of gravity. We find solutions for which the dilaton field condenses inside the vortex core. These solutions can be interpreted as raising the degeneracy between the eigenvalues of the effective stress-energy tensor, namely, the energy per unit length U and the tension T, by picking a privileged spacelike or timelike coordinate direction; in the latter case, a phase frequency threshold occurs that is similar to what is found in ordinary neutral current-carrying cosmic strings. We find that the dilaton contribution for the equation of state, once averaged along the string worldsheet, vanishes, leading to an effective Nambu-Goto behavior of such a string network in cosmology, i.e. on very large scales. It is found also that on small scales, the energy per unit length and tension depend on the string internal coordinates in such a way as to permit the existence of centrifugally supported equilibrium configuration, also known as vortons, whose stability, depending on the very short distance (unknown) physics, can lead to catastrophic consequences on the evolution of the Universe.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)