944 resultados para conservation implications
Resumo:
Translocation is an increasingly popular conservation tool from which a wide range of taxa have benefited. However, to our knowledge, bats have not been translocated successfully. Bats differ behaviourally, morphologically and physiologically from the taxa for which translocation the- ory has been developed, so existing guidelines may not be directly transferable. We review previous translocations of bats and discuss characteristics of bats that may require special consideration dur- ing translocation. Their vagility and homing ability, coloniality, roost requirements, potential ability to transmit diseases, susceptibility to anthropomorphic impacts, and cryptic nature have implications for establishing populations, effects of these populations on the release site, and ability to monitor translocation success following release. We hope that our discussion of potential problems will be able to supplement the existing, more generic guidelines to provide a starting point for the planning of bat translocations.
Resumo:
The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.
Resumo:
Urban encroachment on dense, coastal koala populations has ensured that their management has received increasing government and public attention. The recently developed National Koala Conservation Strategy calls for maintenance of viable populations in the wild. Yet the success of this, and other, conservation initiatives is hampered by lack of reliable and generally accepted national and regional population estimates. In this paper we address this problem in a potentially large, but poorly studied, regional population in the State that is likely to have the largest wild populations. We draw on findings from previous reports in this series and apply the faecal standing-crop method (FSCM) to derive a regional estimate of more than 59 000 individuals. Validation trials in riverine communities showed that estimates of animal density obtained from the FSCM and direct observation were in close agreement. Bootstrapping and Monte Carlo simulations were used to obtain variance estimates for our population estimates in different vegetation associations across the region. The most favoured habitat was riverine vegetation, which covered only 0.9% of the region but supported 45% of the koalas. We also estimated that between 1969 and 1995 -30% of the native vegetation associations that are considered as potential koala habitat were cleared, leading to a decline of perhaps 10% in koala numbers. Management of this large regional population has significant implications for the national conservation of the species: the continued viability of this population is critically dependent on the retention and management of riverine and residual vegetation communities, and future vegetation-management guidelines should be cognisant of the potential impacts of clearing even small areas of critical habitat. We also highlight eight management implications.
Resumo:
The mountain yellow-legged frog Rana muscosa sensu lato, once abundant in the Sierra Nevada of California and Nevada, and the disjunct Transverse Ranges of southern California, has declined precipitously throughout its range, even though most of its habitat is protected. The species is now extinct in Nevada and reduced to tiny remnants in southern California, where as a distinct population segment, it is classified as Endangered. Introduced predators (trout), air pollution and an infectious disease (chytridiomycosis) threaten remaining populations. A Bayesian analysis of 1901 base pairs of mitochondrial DNA confirms the presence of two deeply divergent clades that come into near contact in the Sierra Nevada. Morphological studies of museum specimens and analysis of acoustic data show that the two major mtDNA clades are readily differentiated phenotypically. Accordingly, we recognize two species, Rana sierrae, in the northern and central Sierra Nevada, and R. muscosa, in the southern Sierra Nevada and southern California. Existing data indicate no range overlap. These results have important implications for the conservation of these two species as they illuminate a profound mismatch between the current delineation of the distinct population segments (southern California vs. Sierra Nevada) and actual species boundaries. For example, our study finds that remnant populations of R. muscosa exist in both the southern Sierra Nevada and the mountains of southern California, which may broaden options for management. In addition, despite the fact that only the southern California populations are listed as Endangered, surveys conducted since 1995 at 225 historic (1899-1994) localities from museum collections show that 93.3% (n=146) of R. sierrae populations and 95.2% (n=79) of R. muscosa populations are extinct. Evidence presented here underscores the need for revision of protected population status to include both species throughout their ranges.
Resumo:
The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K aerogenes. The possible evolutionary implications of the results are discussed. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.v. All rights reserved.
Resumo:
Crystal structure determination of the lectin domain of MSMEG_3662 from Mycobacterium smegmatis and its complexes with mannose and methyl-alpha-mannose, the first effort of its kind on a mycobacterial lectin, reveals a structure very similar to beta-prism II fold lectins from plant sources, but with extensive unprecedented domain swapping in dimer formation. The two subunits in a dimer often show small differences in structure, but the two domains, not always related by 2-fold symmetry, have the same structure. Each domain carries three sugar-binding sites, similar to those in plant lectins, one on each Greek key motif. The occurrence of beta-prism II fold lectins in bacteria, with characteristics similar to those from plants, indicates that this family of lectins is of ancient origin and had evolved into a mature system before bacteria and plants diverged. In plants, the number of binding sites per domain varies between one and three, whereas the number is two in the recently reported lectin domains from Pseudomonas putida and Pseudomonas aeruginosa. An analysis of the sequences of the lectins and the lectin domains shows that the level of sequence similarity among the three Greek keys in each domain has a correlation with the number of binding sites in it. Furthermore, sequence conservation among the lectins from different species is the highest for that Greek key which carries a binding site in all of them. Thus, it would appear that carbohydrate binding influences the course of the evolution of the lectin.
Resumo:
Water chestnut (Trapa natans L.,sensu lato) is an annual, floating-leaved aquatic plant of temperate and tropical freshwater wetlands, rivers, lakes, ponds, and estuaries. Native to Eurasia and Africa, water chestnut has been widely gathered for its large nutritious seed since the Neolithic and is cultivated for food in Asia. Water chestnut is now a species of conservation concern in Europe and Russia. Introduced to the northeastern United States in the mid-1800s, the spread of water chestnut as a nuisance weed was apparently favored by cultural eutrophication. Water chestnut is considered a pest in the U.S. because it forms extensive, dense beds in lakes, rivers, and freshwater-tidal habitats.
Resumo:
We conducted a field experiment between August 2001 and February 2002 in Kings Bay, FL, USA, designed to determine whether the amount of time allowed for wild celery (Vallisneria americana Michx) transplants to establish altered the effect of herbivorous manatees (Trichechus manatus L.)on their survival.
Resumo:
We compared seasonal changes in Eurasian watermilfoil (Myriophyllum spicatum L.) characteristics and water temperature for a shallow poind in Davis, CA, and the Truckee River, near Tahoe City, CA. Tissue C and N were 15% lower in plants from the Truckee River than in plants from the Davis pond. Seasonal fluctuations in tissue N were also different. Mean phenolic acid content of Truckee River palnts (162yM g-1) was less than those from the shallow pond (195 yM g-1). Phenolic acid content was positively related to tissue C for Truckee River and Davis pond plants and, tissue C:N ratio for Truckee River plants. Mean monthly water temperature (1990 to 1998) for the Truckee River site was less than 20 C. Water temperatures were warmer in August and September at this site. However, Eurasian watermilfoil collected during these months was characterized by lower levels of tissue N. During a 29-month period beginning January 1994, mean monthly water temperature for the Davis pond exceeded 20 C, only during July to September 1995. Tissue N was generally greater during summer for watermilfoil growing in the pond. These results imply that Eurasian watermilfoil biological control agents may have different developmental rates in these habitats, and thus different impacts on watermilfoil populations.
Resumo:
A study was conducted in October 2006 in the Charleston, South Carolina area to test the movements of three different buoy line types to determine which produced a preferred profile that could reduce the risk of dolphin entanglement. Tests on diamond-braided nylon commonly used in the crab pot fishery were compared with stiffened line of Esterpro and calf types in both shallow and deep water environments using DSTmilli data loggers. Loggers were placed at intervals along the lines to record depth, and thus movements, over a 24 hour period. Three observers viewed video animations and charts created for each of the six trial days from the collected logger data and provided their opinions on the most desirable line type that fit set criteria. A quantitative analysis (ANCOVA) of the data was conducted taking into consideration daily tidal fluctuations and logger movements. Loggers tracking the tides had an r2 value approaching 1.00 and produced little movement other than with the tides. Conversely, r2 values approaching 0.00 were less affected by tidal movement and influenced by currents that cause more erratic movement. Results from this study showed that stiffened line, in particular the medium lay Esterpro type, produced the more desirable profiles that could reduce risk of dolphin entanglement. Combining the observer’s results with the ANCOVA results, Esterpro was chosen nearly 60% of the time as opposed to the nylon line which was only chosen 10% of the time. ANCOVA results showed that the stiffened lines performed better in both the shallow and deep water environments, while the nylon line only performed better during one trial in a deep water set, most probably due to the increased current velocities experienced that day. (58pp.)(PDF contains 68 pages)
Resumo:
Executive Summary: Tropical marine ecosystems in the Caribbean region are inextricably linked through the movement of pollutants, nutrients, diseases, and other stressors, which threaten to further degrade coral reef communities. The magnitude of change that is occurring within the region is considerable, and solutions will require investigating pros and cons of networks of marine protected areas (MPAs), cooperation of neighboring countries, improved understanding of how external stressors degrade local marine resources, and ameliorating those stressors. Connectivity can be broadly defined as the exchange of materials (e.g., nutrients and pollutants), organisms, and genes and can be divided into: 1) genetic or evolutionary connectivity that concerns the exchange of organisms and genes, 2) demographic connectivity, which is the exchange of individuals among local groups, and 3) oceanographic connectivity, which includes flow of materials and circulation patterns and variability that underpin much of all these exchanges. Presently, we understand little about connectivity at specific locations beyond model outputs, and yet we must manage MPAs with connectivity in mind. A key to successful MPA management is how to most effectively work with scientists to acquire the information managers need. Oceanography connectivity is poorly understood, and even less is known about the shape of the dispersal curve for most species. Dispersal kernels differ for various systems, species, and life histories and are likely highly variable in space and time. Furthermore, the implications of different dispersal kernels on population dynamics and management of species is unknown. However, small dispersal kernels are the norm - not the exception. Linking patterns of dispersal to management options is difficult given the present state of knowledge. The behavioral component of larval dispersal has a major impact on where larvae settle. Individual larval behavior and life history details are required to produce meaningful simulations of population connectivity. Biological inputs are critical determinants of dispersal outcomes beyond what can be gleaned from models of passive dispersal. There is considerable temporal and spatial variation to connectivity patterns. New models are increasingly being developed, but these must be validated to understand upstream-downstream neighborhoods, dispersal corridors, stepping stones, and source/sink dynamics. At present, models are mainly useful for providing generalities and generating hypotheses. Low-technology approaches such as drifter vials and oceanographic drogues are useful, affordable options for understanding local connectivity. The “silver bullet” approach to MPA design may not be possible for several reasons. Genetic connectivity studies reveal divergent population genetic structures despite similar larval life histories. Historical stochasticity in reproduction and/or recruitment likely has important, longlasting consequences on present day genetic structure. (PDF has 200 pages.)
Resumo:
A brief account is given of a pilot demonstration of the chemical control of water hyacinth (Eichhornia crassipes) at Ere (a channel) in Nigeria using the herbicide glyphosphate. Results suggest that there was an increase in the nutrient content of the channel after herbicide application. This implied an upsurge of available food for fish and other aquatic organisms within the channel after the herbicide application. The decaying water hyacinth mass which sinks into the medium is likely to boost nutrient content, promoting the growth of fish and other aquatic animals. It is concluded that herbicidal control of water hyacinth is possible, especially under specialists' management with the conservation of fish and other non-target aquatic organisms alongside improved fish production
Resumo:
Rapid Appraisals of the current fisheries situations of some selected inland water bodies in Nigeria were carried out within the framework of Aquaculture and Inland Fisheries Project (AIFP) Annex II of the National Special Programme for Food Security (NSPFS). This paper presents the results of the fishery assessment of one of the selected inland water bodies (Sabke Lake) in Nigeria with a view to optimizing the fish yield through the adoption of improved culture based fishery techniques and community-based fisheries management. The lake is unmanaged and the fishing pressure was found to be very high. Also a number of fishermen were found using small mesh size nets to crop the juveniles of highly valued fish species for an optimum catch. About 14 fishermen ought to have been engaged in full time fishing activities if the fisheries of this lake is to be managed on a sustainable basis. However, a surplus of over 100 fishermen was recorded actively fishing during the period of the study. The results further revealed that Fisheries Rules and Regulations were not established for the national exploitation and proper management of the fisheries of many inland water bodies including Sabke Lake. All these have a depilatory effect on the abundance and sizes of fish harvested from the nigerian inland water bodies especially Sabke Lake. A community based management system that establishes a participatory involvement of fishermen in the conservation and national exploitation of fisheries resources for their own well being is recommended for Sabke Lake and other inland water bodies in Nigeria
Resumo:
This is the NRA's role in wetland conservation report produced by the National Rivers Authority in 1995. This document is the third of a series of three R&D Notes produced as part of an integrated research programme addressing aspects of the NRA's role in wetland management and conservation. Chapter 1 considers the nature of the wetland resource and its definition. Chapter 2 presents the NRA's current legislative and policy framework relating to its role in wetland conservation. National and international legislation and agreements are considered, and particular attention is afforded to the potential implications of the 'Habitats Directive'. Chapter 4 presents key examples of operational casework involving wetlands. Differences in approach and external perceptions of the NRA's current and likely future role in wetland conservation are discussed within Chapter 5. Other issues highlighted in this report are: policy guidance required on NRA’s role in land drainage; standard of flood defence service for wetlands; cost-benefit analysis; strategies for halting and reversing the decline and degradation of wetland resource; and Catchment Management Planning.