972 resultados para conjugated, comb-type polymer, amphiphilic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel latex based and solution based adhesives were prepared and evaluated for wood to wood bonding.These adhesive were found to be superior to commercical adhesives like fevicol and dentrite.Novel adhesives were prepared for leather to leather bonding and these were also found to be more efficientt than the polyurethane type and dentrite adhesives used commercially.A novel strip adhesive system employing very low amount of solvents was tried successfully for rubber-to-metal bonding.Further ,a novel adhesive system was investigated successfully for bonding copper coated bead wire and steel cord to rubber by modifying it with chloroprene rubber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light emitting polymers (LEP) have drawn considerable attention because of their numerous potential applications in the field of optoelectronic devices. Till date, a large number of organic molecules and polymers have been designed and devices fabricated based on these materials. Optoelectronic devices like polymer light emitting diodes (PLED) have attracted wide-spread research attention owing to their superior properties like flexibility, lower operational power, colour tunability and possibility of obtaining large area coatings. PLEDs can be utilized for the fabrication of flat panel displays and as replacements for incandescent lamps. The internal efficiency of the LEDs mainly depends on the electroluminescent efficiency of the emissive polymer such as quantum efficiency, luminance-voltage profile of LED and the balanced injection of electrons and holes. Poly (p-phenylenevinylene) (PPV) and regio-regular polythiophenes are interesting electro-active polymers which exhibit good electrical conductivity, electroluminescent activity and high film-forming properties. A combination of Red, Green and Blue emitting polymers is necessary for the generation of white light which can replace the high energy consuming incandescent lamps. Most of these polymers show very low solubility, stability and poor mechanical properties. Many of these light emitting polymers are based on conjugated extended chains of alternating phenyl and vinyl units. The intra-chain or inter-chain interactions within these polymer chains can change the emitted colour. Therefore an effective way of synthesizing polymers with reduced π-stacking, high solubility, high thermal stability and high light-emitting efficiency is still a challenge for chemists. New copolymers have to be effectively designed so as to solve these issues. Hence, in the present work, the suitability of a few novel copolymers with very high thermal stability, excellent solubility, intense light emission (blue, cyan and green) and high glass transition temperatures have been investigated to be used as emissive layers for polymer light emitting diodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers with conjugated π-electron backbone display unusual electronic properties such as low energy optical transition, low ionization potentials, and high electron affinities. The properties that make these materials attractive include a wide range of electrical conductivity, mechanical flexibility and thermal stability. Some of the potential applications of these conjugated polymers are in sensors, solar cells, field effect transistors, field emission and electrochromic displays, supercapacitors and energy storage. With recent advances in the stability of conjugated polymer materials, and improved control of properties, a growing number of applications are currently being explored. Some of the important applications of conducting polymers include: they are used in electrostatic materials, conducting adhesives, shielding against electromagnetic interference (EMI), artificial nerves, aircraft structures, diodes, and transistors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the early stages of the twentieth century, polyaniline (PANI), a well-known and extensively studied conducting polymer has captured the attention of scientific community owing to its interesting electrical and optical properties. Starting from its structural properties, to the currently pursued optical, electrical and electrochemical properties, extensive investigations on pure PANI and its composites are still much relevant to explore its potentialities to the maximum extent. The synthesis of highly crystalline PANI films with ordered structure and high electrical conductivity has not been pursued in depth yet. Recently, nanostructured PANI and the nanocomposites of PANI have attracted a great deal of research attention owing to the possibilities of applications in optical switching devices, optoelectronics and energy storage devices. The work presented in the thesis is centered around the realization of highly conducting and structurally ordered PANI and its composites for applications mainly in the areas of nonlinear optics and electrochemical energy storage. Out of the vast variety of application fields of PANI, these two areas are specifically selected for the present studies, because of the following observations. The non-linear optical properties and the energy storing properties of PANI depend quite sensitively on the extent of conjugation of the polymer structure, the type and concentration of the dopants added and the type and size of the nano particles selected for making the nanocomposites. The first phase of the work is devoted to the synthesis of highly ordered and conducting films of PANI doped with various dopants and the structural, morphological and electrical characterization followed by the synthesis of metal nanoparticles incorporated PANI samples and the detailed optical characterization in the linear and nonlinear regimes. The second phase of the work comprises the investigations on the prospects of PANI in realizing polymer based rechargeable lithium ion cells with the inherent structural flexibility of polymer systems and environmental safety and stability. Secondary battery systems have become an inevitable part of daily life. They can be found in most of the portable electronic gadgets and recently they have started powering automobiles, although the power generated is low. The efficient storage of electrical energy generated from solar cells is achieved by using suitable secondary battery systems. The development of rechargeable battery systems having excellent charge storage capacity, cyclability, environmental friendliness and flexibility has yet to be realized in practice. Rechargeable Li-ion cells employing cathode active materials like LiCoO2, LiMn2O4, LiFePO4 have got remarkable charge storage capacity with least charge leakage when not in use. However, material toxicity, chance of cell explosion and lack of effective cell recycling mechanism pose significant risk factors which are to be addressed seriously. These cells also lack flexibility in their design due to the structural characteristics of the electrode materials. Global research is directed towards identifying new class of electrode materials with less risk factors and better structural stability and flexibility. Polymer based electrode materials with inherent flexibility, stability and eco-friendliness can be a suitable choice. One of the prime drawbacks of polymer based cathode materials is the low electronic conductivity. Hence the real task with this class of materials is to get better electronic conductivity with good electrical storage capability. Electronic conductivity can be enhanced by using proper dopants. In the designing of rechargeable Li-ion cells with polymer based cathode active materials, the key issue is to identify the optimum lithiation of the polymer cathode which can ensure the highest electronic conductivity and specific charge capacity possible The development of conducting polymer based rechargeable Li-ion cells with high specific capacity and excellent cycling characteristics is a highly competitive area among research and development groups, worldwide. Polymer based rechargeable batteries are specifically attractive due to the environmentally benign nature and the possible constructional flexibility they offer. Among polymers having electrical transport properties suitable for rechargeable battery applications, polyaniline is the most favoured one due to its tunable electrical conducting properties and the availability of cost effective precursor materials for its synthesis. The performance of a battery depends significantly on the characteristics of its integral parts, the cathode, anode and the electrolyte, which in turn depend on the materials used. Many research groups are involved in developing new electrode and electrolyte materials to enhance the overall performance efficiency of the battery. Currently explored electrolytes for Li ion battery applications are in liquid or gel form, which makes well-defined sealing essential. The use of solid electrolytes eliminates the need for containment of liquid electrolytes, which will certainly simplify the cell design and improve the safety and durability. The other advantages of polymer electrolytes include dimensional stability, safety and the ability to prevent lithium dendrite formation. One of the ultimate aims of the present work is to realize all solid state, flexible and environment friendly Li-ion cells with high specific capacity and excellent cycling stability. Part of the present work is hence focused on identifying good polymer based solid electrolytes essential for realizing all solid state polymer based Li ion cells.The present work is an attempt to study the versatile roles of polyaniline in two different fields of technological applications like nonlinear optics and energy storage. Conducting form of doped PANI films with good extent of crystallinity have been realized using a level surface assisted casting method in addition to the generally employed technique of spin coating. Metal nanoparticles embedded PANI offers a rich source for nonlinear optical studies and hence gold and silver nanoparticles have been used for making the nanocomposites in bulk and thin film forms. These PANI nanocomposites are found to exhibit quite dominant third order optical non-linearity. The highlight of these studies is the observation of the interesting phenomenon of the switching between saturable absorption (SA) and reverse saturable absorption (RSA) in the films of Ag/PANI and Au/PANI nanocomposites, which offers prospects of applications in optical switching. The investigations on the energy storage prospects of PANI were carried out on Li enriched PANI which was used as the cathode active material for assembling rechargeable Li-ion cells. For Li enrichment or Li doping of PANI, n-Butyllithium (n-BuLi) in hexanes was used. The Li doping as well as the Li-ion cell assembling were carried out in an argon filled glove box. Coin cells were assembled with Li doped PANI with different doping concentrations, as the cathode, LiPF6 as the electrolyte and Li metal as the anode. These coin cells are found to show reasonably good specific capacity around 22mAh/g and excellent cycling stability and coulombic efficiency around 99%. To improve the specific capacity, composites of Li doped PANI with inorganic cathode active materials like LiFePO4 and LiMn2O4 were synthesized and coin cells were assembled as mentioned earlier to assess the electrochemical capability. The cells assembled using the composite cathodes are found to show significant enhancement in specific capacity to around 40mAh/g. One of the other interesting observations is the complete blocking of the adverse effects of Jahn-Teller distortion, when the composite cathode, PANI-LiMn2O4 is used for assembling the Li-ion cells. This distortion is generally observed, near room temperature, when LiMn2O4 is used as the cathode, which significantly reduces the cycling stability of the cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, application of fluorescent conjugated polymers to sense chemical and biological analytes has received much attention owing to its technological significance. Water soluble conjugated polymers are interesting towards the developing sensors for biomolecules. In this present contribution, we describe the syntheses and characterization of a series of water soluble conjugated polymers with sulfonic acid groups in the side chain. Such anionic conjugated polymers are designed to interact with biomolecules such as cytochrome-C. All polymers are water soluble and showed strong blue emission. Significant quenching of the fluorescence from our functionalized PPP was observed upon addition of viologen derivatives or cytochrome -C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restricted Hartree-Fock 6-31G calculations of electrical and mechanical anharmonicity contributions to the longitudinal vibrational second hyperpolarizability have been carried out for eight homologous series of conjugated oligomers - polyacetylene, polyyne, polydiacetylene, polybutatriene, polycumulene, polysilane, polymethineimine, and polypyrrole. To draw conclusions about the limiting infinite polymer behavior, chains containing up to 12 heavy atoms along the conjugated backbone were considered. In general, the vibrational hyperpolarizabilities are substantial in comparison with their static electronic counterparts for the dc-Kerr and degenerate four-wave mixing processes (as well as for static fields) but not for electric field-induced second harmonic generation or third harmonic generation. Anharmonicity terms due to nuclear relaxation are important for the dc-Kerr effect (and for the static hyperpolarizability) in the σ-conjugated polymer, polysilane, as well as the nonplanar π systems polymethineimine and polypyrrole. Restricting polypyrrole to be planar, as it is in the crystal phase, causes these anharmonic terms to become negligible. When the same restriction is applied to polymethineimine the effect is reduced but remains quantitatively significant due to the first-order contribution. We conclude that anharmonicity associated with nuclear relaxation can be ignored, for semiquantitative purposes, in planar π-conjugated polymers. The role of zero-point vibrational averaging remains to be evaluated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been great interest recently in peptide amphiphiles and block copolymers containing biomimetic peptide sequences due to applications in bionanotechnology. We investigate the self-assembly of the peptide-PEG amphiphile FFFF-PEG5000 containing the hydrophobic sequence of four phenylalanine residues conjugated to PEG of molar mass 5000. This serves as a simple model peptide amphiphile. At very low concentration, association of hydrophobic aromatic phenylalanine residues occurs, as revealed by circular dichroism and UV/vis fluorescence experiments. A critical aggregation concentration associated with the formation of hydrophobic domains is determined through pyrene fluorescence assays. At higher concentration, defined beta-sheets develop as revealed by FTIR spectroscopy and X-ray diffraction. Transmission electron microscopy reveals self-assembled straight fibril structures. These are much shorter than those observed for amyloid peptides, the finite length may be set by the end cap energy due to the hydrophobicity of phenylalanine. The combination of these techniques points to different aggregation processes depending on concentration. Hydrophobic association into irregular aggregates occurs at low concentration, well-developed beta-sheets only developing at higher concentration. Drying of FFFF-PEG5000 solutions leads to crystallization of PEG, as confirmed by polarized optical microscopy (POM), FTIR and X-ray diffraction (XRD). PEG crystallization does not disrupt local beta-sheet structure (as indicated by FTIR and XRD). However on longer lengthscales the beta-sheet fibrillar structure is perturbed because spheruilites from PEG crystallization are observed by POM. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel 'tweezer-type' complexes that exploit the interactions between pi-electron-rich pyrenyl groups and pi-electron deficient diimide units have been designed and synthesised. The component molecules leading to complex formation were accessed readily from commercially available starting materials through short and efficient syntheses. Analysis of the resulting complexes, using the visible charge-transfer band, revealed association constants that increased sequentially from 130 to 11,000 M-1 as increasing numbers of pi-pi-stacking interactions were introduced into the systems. Computational modelling was used to analyse the structures of these complexes, revealing low-energy chain-folded conformations for both components, which readily allow close, multiple pi-pi-stacking and hydrogen bonding to be achieved. In this paper, we give details of our initial studies of these complexes and outline how their behaviour could provide a basis for designing self-healing polymer blends for use in adaptive coating systems. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthesis, structural characterization, and magnetic properties of a new cyano-bridged one-dimensional iron (III)-gadolinium (III) compound, trans-[Gd(o-phen)(2)(H2O)(2)(mu-CN)(2)Fe(CN)(4)], - 2no-phen (o-phen = 1,10-phenanthroline), have been described. The compound crystallizes in the triclinic P (1) over bar space group with the following unit cell parameters: a = 10.538(14) angstrom, b = 12.004(14) angstrom, c = 20.61(2) angstrom, alpha = 92.41(1)degrees, beta = 92.76(1)degrees, gamma = 11 2.72(1)degrees, and Z = 2. In this complex, each gadolinium (III) is coordinated to two nitrile nitrogens of the CN groups coming from two different ferricyanides, the mutually trans cyanides of each of which links another different Gd-III to create -NC-Fe(CN)(4)-CN-Gd-NC- type 1-D chain structure. The one-dimensional chains are self-assembled in two-dimensions via weak C-H center dot center dot center dot N hydrogen bonds. Both the variable-temperature (2-300 K, 0.01 T and 0.8 T) and variable-field (0-50 000 Gauss, 2 K) magnetic measurements reveal the existence of very weak interaction in this molecule. The temperature dependence of the susceptibilities has been analyzed using a model for a chain of alternating classic (7/2) and quantum (1/2) spins. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the potential benefits of cis-9, trans- 11 conjugated linoleic acid (CLA) for human health there is a need to develop effective strategies for enhancing milk fat CLA concentrations. In this experiment, the effect of forage type and level of concentrate in the diet on milk fatty acid composition was examined in cows given a mixture of fish oil and sunflower oil. Four late lactation Holstein-British Friesian cows were used in a 4 x 4 Latin-square experiment with a 2 x 2 factorial arrangement of treatments and 21-day experimental periods. Treatments consisted of grass (G) or maize (M) silage supplemented with low (L) or high (H) levels of concentrates (65: 35 and 35: 65; forage: concentrate ratio, on a dry matter (DM) basis, respectively) offered as a total mixed ration at a restricted level of intake (20 kg DM per day). Lipid supplements (30 g/kg DM) containing fish oil and sunflower oil (2: 3 w/w) were offered during the last 14 days of each experimental period. Treatments had no effect on total DM intake, milk yield, milk constituent output or milk fat content, but milk protein concentrations were lower (P<0.05) for G than M diets (mean 43.0 and 47.3 g/kg, respectively). Compared with grass silage, milk fat contained higher (P<0.05) amounts Of C-12: 0, C-14: 0, trans C-18:1 and long chain >= C20 (n-3) polyunsaturated fatty acids (PUFA) and lower (P<0.05) levels Of C-18:0 and trans C-18:2 when maize silage was offered. Increases in the proportion of concentrate in the diet elevated (P<0.05) C-18:2 (n-6) and long chain >= C20 (n-3) PUFA content, but reduced (P<0.05) the amount Of C-18:3 (n-3). Concentrations of trans-11 C-18:1 in milk were independent of forage type, but tended (P<0.10) to be lower for high concentrate diets (mean 7.2 and 4.0 g/100 g fatty acids, for L and H respectively). Concentrations of trans-10 C-18:1 were higher (P<0.05) in milk from maize compared with grass silage (mean 10.3 and 4.1 g/100 g fatty acids, respectively) and increased in response to high levels of concentrates in the diet (mean 4.1 and 10.3 g/100 g fatty acids, for L and H, respectively). Forage type had no effect (P>0.05) on total milk conjugated linoleic acid (CLA) (2.7 and 2.8 g/100 g fatty acids, for M and G, respectively) or cis-9, trans-11 CLA content (2.2 and 2.4 g/100 g fatty acids). Feeding high concentrate diets tended (P<0.10) to decrease total CLA (3.3 and 2.2 g/100 g fatty acids, for L and H, respectively) and cis-9, trans-11 CLA (2.9 and 1/7 g/100 g fatty acids) concentrations and increase milk trans-9, cis-11 CLA and trans-10, cis-12 CLA content. In conclusion, the basal diet is an important determinant of milk fatty acid composition when a supplement of fish oil and sunflower oil is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During studies on the bacteriology of appendicitis in children, we often isolated from inflamed and non-inflamed tissue samples, an unusual bile-resistant pigment-producing strictly anaerobic gram-negative rod. Phenotypically this organism resembles members of Bacteroides fragilis group of species, as it is resistant to bile and exhibits a special-potency-disk pattern (resistance to vancomycin, kanamycin and colistin) typical for the B. fragilis group. However, the production of brown pigment on media containing haemolysed blood and a cellular fatty acid composition dominated by iso-C15:0, suggests that the organism most closely resembles species of the genus Porphyromonas. However, the unidentified organism differs from porphyromonads by being bile-resistant and by not producing butyrate as a metabolic end-product. Comparative 16S ribosomal RNA gene sequencing studies show the unidentified organism represents a distinct sub-line, associated with but distinct from, the miss-classified species Bacteroides putredinis. The clustering of the unidentified bacterium with Bacteroides putredinis was statistically significant, but they displayed >4% sequence divergence with each other. Chromosomal DNA-DNA pairing studies further confirmed the separateness of the unidentified bacterium and Bacteroides putredinis. Based on phenotypic and phylogenetic considerations, it is proposed that Bacteroides putredinis and the unidentified bacterium from human sources be classified in a new genus Alistipes, as Alistipes putredinis comb. nov. and Alistipes finegoldii sp. nov., respectively. The type strain of Alistipes finegoldii is CCUG 46020(T) (= AHN2437(T)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-assembled aggregates made of Fmoc-conjugated RGDS and GRDS peptides, where Fmoc refers to fluorenylmethoxycarbonyl, have been investigated using atomistic molecular dynamics simulations. The structural characteristics of twelve different models involving two sheets packed with the Fmoc-aligned or with the charged side groups oriented face-to-face, each one containing seven explicit peptide molecules arranged in parallel or antiparallel, have been evaluated for each Fmoc-tetrapeptide. Structural criteria have been used to select the preferred assembly for each Fmoc-tetrapeptide. The two peptides have been found to prefer b-sheet assemblies with a parallel configuration under simulated low concentration conditions. Furthermore, the assembly is dominated by the interactions among Fmoc units. The overall results provide a complete atomistic view of the interactions between Fmoc-peptide molecules comprised within the same sheet or in different sheets that was not achieved experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.