899 resultados para computer vision, geometric variations, congealing, unsupervised image alignment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional methods of form-roll design and manufacture for Cold Roll-Forming of thin-walled metal sections have been entirely manual, time consuming and prone to errors, resulting in inefficiency and high production costs. With the use of computers, lead time can be significantly improved, particularly for those aspects involving routine but tedious human decisions and actions. This thesis describes the development of computer aided tools for producing form-roll designs for NC manufacture in the CAD/CAM environment. The work was undertaken to modernise the existing activity of a company manufacturing thin-walled sections. The investigated areas of the activity, including the design and drafting of the finished section, the flower patterns, the 10 to 1 templates, and the rolls complete with pinch-difference surfaces, side-rolls and extension-contours, have been successfully computerised by software development . Data generated by the developed software can be further processed for roll manufacturing using NC lathes. The software has been specially designed for portability to facilitate its implementation on different computers. The Opening-Radii method of forming was introduced as a subsitute to the conventional method for better forming. Most of the essential aspects in roll design have been successfully incorporated in the software. With computerisation, extensive standardisation in existing roll design practices and the use of more reliable and scientifically-based methods have been achieved. Satisfactory and beneficial results have also been obtained by the company in using the software through a terminal linked to the University by a GPO line. Both lead time and productivity in roll design and manufacture have been significantly improved. It is therefore concluded that computerisation in the design of form-rolls for automation by software development is viable. The work also demonstrated the promising nature of the CAD/CAM approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is an overview of the development and application of Computer Vision for the Structural Health
Monitoring (SHM) of Bridges. A brief explanation of SHM is provided, followed by a breakdown of the stages of computer
vision techniques separated into laboratory and field trials. Qualitative evaluations and comparison of these methods have been
provided along with the proposal of guidelines for new vision-based SHM systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strawberries harvested for processing as frozen fruits are currently de-calyxed manually in the field. This process requires the removal of the stem cap with green leaves (i.e. the calyx) and incurs many disadvantages when performed by hand. Not only does it necessitate the need to maintain cutting tool sanitation, but it also increases labor time and exposure of the de-capped strawberries before in-plant processing. This leads to labor inefficiency and decreased harvest yield. By moving the calyx removal process from the fields to the processing plants, this new practice would reduce field labor and improve management and logistics, while increasing annual yield. As labor prices continue to increase, the strawberry industry has shown great interest in the development and implementation of an automated calyx removal system. In response, this dissertation describes the design, operation, and performance of a full-scale automatic vision-guided intelligent de-calyxing (AVID) prototype machine. The AVID machine utilizes commercially available equipment to produce a relatively low cost automated de-calyxing system that can be retrofitted into existing food processing facilities. This dissertation is broken up into five sections. The first two sections include a machine overview and a 12-week processing plant pilot study. Results of the pilot study indicate the AVID machine is able to de-calyx grade-1-with-cap conical strawberries at roughly 66 percent output weight yield at a throughput of 10,000 pounds per hour. The remaining three sections describe in detail the three main components of the machine: a strawberry loading and orientation conveyor, a machine vision system for calyx identification, and a synchronized multi-waterjet knife calyx removal system. In short, the loading system utilizes rotational energy to orient conical strawberries. The machine vision system determines cut locations through RGB real-time feature extraction. The high-speed multi-waterjet knife system uses direct drive actuation to locate 30,000 psi cutting streams to precise coordinates for calyx removal. Based on the observations and studies performed within this dissertation, the AVID machine is seen to be a viable option for automated high-throughput strawberry calyx removal. A summary of future tasks and further improvements is discussed at the end.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we pursue the task of aligning an ensemble of images in an unsupervised manner. This task has been commonly referred to as “congealing” in literature. A form of congealing, using a least-squares criteria, has been recently demonstrated to have desirable properties over conventional congealing. Least-squares congealing can be viewed as an extension of the Lucas & Kanade (LK)image alignment algorithm. It is well understood that the alignment performance for the LK algorithm, when aligning a single image with another, is theoretically and empirically equivalent for additive and compositional warps. In this paper we: (i) demonstrate that this equivalence does not hold for the extended case of congealing, (ii) characterize the inherent drawbacks associated with least-squares congealing when dealing with large numbers of images, and (iii) propose a novel method for circumventing these limitations through the application of an inverse-compositional strategy that maintains the attractive properties of the original method while being able to handle very large numbers of images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel framework for the unsupervised alignment of an ensemble of temporal sequences. This approach draws inspiration from the axiom that an ensemble of temporal signals stemming from the same source/class should have lower rank when "aligned" rather than "misaligned". Our approach shares similarities with recent state of the art methods for unsupervised images ensemble alignment (e.g. RASL) which breaks the problem into a set of image alignment problems (which have well known solutions i.e. the Lucas-Kanade algorithm). Similarly, we propose a strategy for decomposing the problem of temporal ensemble alignment into a similar set of independent sequence problems which we claim can be solved reliably through Dynamic Time Warping (DTW). We demonstrate the utility of our method using the Cohn-Kanade+ dataset, to align expression onset across multiple sequences, which allows us to automate the rapid discovery of event annotations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, many approaches have been proposed for deformable face alignment with varying degrees of success. However, the common drawback to nearly all these approaches is the inaccurate landmark registrations. The registration errors which occur are predominantly heterogeneous (i.e. low error for some frames in a sequence and higher error for others). In this paper we propose an approach for simultaneously aligning an ensemble of deformable face images stemming from the same subject given noisy heterogeneous landmark estimates. We propose that these initial noisy landmark estimates can be used as an “anchor” in conjunction with known state-of-the-art objectives for unsupervised image ensemble alignment. Impressive alignment performance is obtained using well known deformable face fitting algorithms as “anchors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an unsupervised graph cut based object segmentation method using 3D information provided by Structure from Motion (SFM), called Grab- CutSFM. Rather than focusing on the segmentation problem using a trained model or human intervention, our approach aims to achieve meaningful segmentation autonomously with direct application to vision based robotics. Generally, object (foreground) and background have certain discriminative geometric information in 3D space. By exploring the 3D information from multiple views, our proposed method can segment potential objects correctly and automatically compared to conventional unsupervised segmentation using only 2D visual cues. Experiments with real video data collected from indoor and outdoor environments verify the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e. g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic detection of suspicious activities in CCTV camera feeds is crucial to the success of video surveillance systems. Such a capability can help transform the dumb CCTV cameras into smart surveillance tools for fighting crime and terror. Learning and classification of basic human actions is a precursor to detecting suspicious activities. Most of the current approaches rely on a non-realistic assumption that a complete dataset of normal human actions is available. This paper presents a different approach to deal with the problem of understanding human actions in video when no prior information is available. This is achieved by working with an incomplete dataset of basic actions which are continuously updated. Initially, all video segments are represented by Bags-Of-Words (BOW) method using only Term Frequency-Inverse Document Frequency (TF-IDF) features. Then, a data-stream clustering algorithm is applied for updating the system's knowledge from the incoming video feeds. Finally, all the actions are classified into different sets. Experiments and comparisons are conducted on the well known Weizmann and KTH datasets to show the efficacy of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Computer vision has been widely used in the inspection of electronic components. This paper proposes a computer vision system for the automatic detection, localisation, and segmentation of solder joints on Printed Circuit Boards (PCBs) under different illumination conditions. Design/methodology/approach: An illumination normalization approach is applied to an image, which can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image the same as in the corresponding image under normal lighting conditions. Consequently special lighting and instrumental setup can be reduced in order to detect solder joints. These normalised images are insensitive to illumination variations and are used for the subsequent solder joint detection stages. In the segmentation approach, the PCB image is transformed from an RGB color space to a YIQ color space for the effective detection of solder joints from the background. Findings: The segmentation results show that the proposed approach improves the performance significantly for images under varying illumination conditions. Research limitations/implications: This paper proposes a front-end system for the automatic detection, localisation, and segmentation of solder joint defects. Further research is required to complete the full system including the classification of solder joint defects. Practical implications: The methodology presented in this paper can be an effective method to reduce cost and improve quality in production of PCBs in the manufacturing industry. Originality/value: This research proposes the automatic location, identification and segmentation of solder joints under different illumination conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an extended study on the implementation of support vector machine(SVM) based speaker verification in systems that employ continuous progressive model adaptation using the weight-based factor analysis model. The weight-based factor analysis model compensates for session variations in unsupervised scenarios by incorporating trial confidence measures in the general statistics used in the inter-session variability modelling process. Employing weight-based factor analysis in Gaussian mixture models (GMM) was recently found to provide significant performance gains to unsupervised classification. Further improvements in performance were found through the integration of SVM-based classification in the system by means of GMM supervectors. This study focuses particularly on the way in which a client is represented in the SVM kernel space using single and multiple target supervectors. Experimental results indicate that training client SVMs using a single target supervector maximises performance while exhibiting a certain robustness to the inclusion of impostor training data in the model. Furthermore, the inclusion of low-scoring target trials in the adaptation process is investigated where they were found to significantly aid performance.