936 resultados para computer assisted tomography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using navigation systems in general orthopaedic surgery and, in particular, knee replacement is becoming more and more accepted. This paper describes the basic technological concepts of modern computer assisted surgical systems. It explains the variation in currently available systems and outlines research activities that will potentially influence future products. In general, each navigation system is defined by three components: (1) the therapeutic object is the anatomical structure that is operated on using the navigation system, (2) the virtual object represents an image of the therapeutic object, with radiological images or computer generated models potentially being used, and (3) last but not least, the navigator acquires the spatial position and orientation of instruments and anatomy thus providing the necessary data to replay surgical action in real-time on the navigation system's screen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To design and evaluate a novel computer-assisted, fluoroscopy-based planning and navigation system for minimally invasive ventral spondylodesis of thoracolumbar fractures. MATERIALS AND METHODS: Instruments and an image intensifier are tracked with the SurgiGATE navigation system (Praxim-Medivision). Two fluoroscopic images, one acquired from anterior-posterior (AP) direction and the other from lateral-medial (LM) direction, are used for the complete procedure of planning and navigation. Both of them are calibrated with a custom-made software to recover their projection geometry and to co-register them to a common patient reference coordinate system, which is established by attaching an opto-electronically trackable dynamic reference base (DRB) on the operated vertebra. A bi-planar landmark reconstruction method is used to acquire deep-seated anatomical landmarks such that an intraoperative planning of graft bed can be interactively done. Finally, surgical actions such as the placement of the stabilization devices and the formation of the graft bed using a custom-made chisel are visualized to the surgeon by superimposing virtual instrument representations onto the acquired images. The distance between the instrument tip and each wall of the planned graft bed are calculated on the fly and presented to the surgeon so that the surgeon could formalize the graft bed exactly according to his/her plan. RESULTS: Laboratory studies on phantom and on 27 plastic vertebras demonstrate the high precision of the proposed navigation system. Compared with CT-based measurement, a mean error of 1.0 mm with a standard deviation of 0.1 mm was found. CONCLUSIONS: The proposed computer assisted, fluoroscopy-based planning and navigation system promises to increase the accuracy and reliability of minimally invasive ventral spondylodesis of thoracolumbar fractures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel computer-assisted injection device for the delivery of highly viscous bone cements in vertebroplasty is presented. It addresses the shortcomings of manual injection systems ranging from low-pressure and poor level of control to device failure. The presented instrument is capable of generating a maximum pressure of 5000 kPa in traditional 6-ml syringes and provides an advanced control interface for precise cement delivery from outside radiation fields emitted by intraoperative imaging systems. The integrated real-time monitoring of injection parameters, such as flow-rate, volume, pressure, and viscosity, simplifies consistent documentation of interventions and establishes a basis for the identification of safe injection protocols on the longer term. Control algorithms prevent device failure due to overloading and provide means to immediately stop cement flow to avoid leakage into adjacent tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Computer-assisted navigation is increasingly used in functional endoscopic sinus surgery (FESS) to prevent injury to vital structures, necessitating preparative CT and, thus, radiation exposure. The purpose of our study was to investigate currently used radiation doses for CT in computer-assisted navigation in sinus surgery (CAS-CT) and to assess minimal doses required. MATERIALS AND METHODS: A questionnaire inquiring about dose parameters used for CAS-CT was sent to 30 radiologic institutions. The feasibility of low-dose registration was tested with a phantom. The influence of CAS-CT dose on technical accuracy and on the practical performance of 5 ear, nose, and throat (ENT) surgeons was evaluated with cadaver heads. RESULTS: The questionnaire response rate was 63%. Variation between minimal and maximal dose used for CAS-CT was 18-fold. Phantom registration was possible with doses as low as 1.1 mGy. No dose dependence on technical accuracy was found. ENT surgeons were able to identify anatomic landmarks on scans with a dose as low as 3.1 mGy. CONCLUSIONS: The vast dose difference between institutions mirrors different attitudes toward image quality and radiation-protection issues rather than being technically founded, and many patients undergo CAS-CT at higher doses than necessary. The only limit for dose reduction in CT for computer-assisted endoscopic sinus surgery is the ENT surgeon's ability to cope with impaired image quality, whereas there is no technically justified lower dose limit. We recommend, generally, doses used for the typical diagnostic low-dose sinus CT (120 kV/20-50 mAs). When no diagnostic image quality is needed, even a reduction down to a third is possible.