997 resultados para composting of sawdust
Resumo:
The different methods of sewage sludge stabilization modify their physical chemical and biological properties, altering its efficiency when applied in agriculture. The objective of this study was to evaluate the nutrient levels in soil and the yield of sunflower fertilized with sewage sludge stabilized by different processes. The experiment was conducted in Cambisol, with the treatments: control (without fertilization), fertilization with sewage sludge solarized, composted, vermicomposted, limed and chemical fertilizer recommended for sunflower crop. The experimental design a randomized block with four replications. The different methods of sewage sludge treatment did not affect the yield; however, the application of sewage sludge, regardless the stabilization process adopted, was more effective than chemical fertilizer and the control treatment. Overall, fertilization with limed sewage sludge provided higher soil nutrients concentrations, while treatments with composted and vermicomposted sewage sludge showed higher levels of nutrients in the plant.
Resumo:
Exposure to certain fungi can cause human illness. Fungi cause adverse human health effects through three specific mechanisms: generation of a harmful immune response (e.g., allergy or hypersensitivity pneumonitis); direct infection by the fungal organism; by toxic-irritant effects from mold byproducts, such as mycotoxins. In Portugal there is an increasingly industry of large facilities that produce whole chickens for domestic consumption and only few investigations have reported on fungal contamination of the poultry litter. The material used for poultry litter is varied but normally can be constitute by: pine shavings; sawdust of eucalyptus; other types of wood; peanut; coffee; sugar cane; straw; hay; grass; paper processed. Litter is one of the most contributive factors to fungal contamination in poultries. Spreading litter is one of the tasks that normally involve higher exposure of the poultry workers to dust, fungi and their metabolites, such as VOC’s and mycotoxins. After being used and removed from poultries, litter is ploughed into agricultural soils, being this practice potentially dangerous for the soil environment, as well for both humans and animals. The goal of this study was to characterize litter’s fungal contamination and also to report the incidence of keratinophilic and toxigenic fungi.
Resumo:
Some previous studies have suggested that some of the volatile organic compounds (VOCs) found in composting plants may have a toxic effect that can influence, besides surroundings populations, workers from the composting plants. Impact of waste management to the environment and workers is already recognised as an environment and occupational health concerns. Several studies regarding the VOCs and bioaerosols emissions from composting have been conducted all over Europe and also in Asia. However, in Portugal the studies developed are scarce and normally VOCs are not studied and recognized as a risk factor present in this occupational setting. Consudering this, a study was developed in a Portuguese composting plant aiming to clarify if there was VOCs presence in the workplaces.
Resumo:
Fungal contamination in composting facilities has been associated with increased respiratory and skin pathologies among compost workers. In this study we aim to characterize the fungal contamination caused by Aspergillus genera within a totally indoor composting plant located in Portugal. Air samples of 50L were collected from 6 sampling sites through an impaction method. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. Pre-treatment and waste screw were the sampling sites of the analyzed composting plant with the highest Aspergillus load in the air. Globally, the genus Aspergillus presented the highest prevalence both in the air from (90.6%), and surfaces from the same sampling sites (60.8%). The results obtained in this study claim the attention to the need of further research regarding the fungal contamination dur to Aspergillus genus in composting plants.
Resumo:
The handling of waste can be responsible for occupational exposure to particles and fungi. The aim of this study was to characterize exposure to particles and fungi in a composting plant. Measurements of particulate matter were performed using portable direct-reading equipment. Air samples of 50L were collected through an impaction method with a flow rate of 140L/min onto malt extract agar supplemented with chloramphenicol (0.05%). Surfaces samples were also collected. All the samples were incubated at 27ºC for 5 to 7 days. Particulate matter data showed higher contamination for PM, and PM10 sizes. Aspergillus genus presents the highest air prevalence (90.6%). Aspergillus niger (32.6%), A. fumigatus (26.5%) and A. flavus (16.3%) were the most prevalent fungi in air sampling, and Mucor sp. (39.2%), Aspergillus niger (30.9%) and A. fumigatus (28.7%) were the most found in surfaces. the results obtained claim the attention to the need of further research.
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.
Resumo:
Aflatoxin B1 (AFB1) is considered by different International Agencies as a genotoxic and potent hepatocarcinogen. However, despite the fact that the fungi producing this compound are detected in some work environments, AFB1 is rarely monitored in occupational settings. The aim of the present investigation was to assess exposure to AFB1 of workers from one Portuguese waste company located in the outskirt of Lisbon. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Forty-one workers from the waste company were enrolled in this study (26 from sorting; 9 from composting; 6 from incineration). A control group (n = 30) was also considered in order to know the AFB1 background levels for the Portuguese population. All the workers showed detectable levels of AFB1 with values ranging from 2.5ng ml−1 to 25.9ng ml−1 with a median value of 9.9±5.4ng ml−1. All of the controls showed values below the method’s detection limit. Results obtained showed much higher (8-fold higher) values when compared with other Portuguese settings already studied, such as poultry and swine production. Besides this mycotoxin, other mycotoxins are probably present in this occupational setting and this aspect should be taken into consideration for the risk assessment process due to possible synergistic reactions. The data obtained suggests that exposure to AFB1 occurs in a waste management setting and claims attention for the need of appliance of preventive and protective safety measures.
Resumo:
Spent coffee grounds (SCG) are usually disposed as common garbage, without specific reuse strategies implemented so far. Due to its recognised richness in bioactive compounds, the effect of SCG on lettuce’s macro- and micro-elements was assessed to define its effectiveness for agro industrial reuse. A greenhouse pot experiment was conducted with different amounts of fresh and composted spent coffee, and potassium, magnesium, phosphorous, calcium, sodium, iron, manganese, zinc and copper were analysed. A progressive decrease on all lettuce mineral elements was verified with the increase of fresh spent coffee, except for potassium. In opposition, an increment of lettuce’s essential macro-elements was verified when low amounts of composted spent coffee were applied (5%, v/v), increasing potassium content by 40%, manganese by 30%, magnesium by 20%, and sodium by 10%, of nutritional relevance This practical approach offers an alternative reuse for this by-product, extendable to other crops, providing value-added vegetable products.
Resumo:
Programa Doutoral em Engenharia Mecânica.
Resumo:
This Study assessed the development of sludge treatment and reuse policy since the original 1993 National Sludge Strategy Report (Weston-FTA, 1993). A review of the 48 sludge treatment centres, current wastewater treatment systems and current or planned sludge treatment and reuse systems was carried out Sludges from all Regional Sludge Treatment Centres (areas) were characterised through analysis of selected parameters. There have been many changes to the original policy, as a result of boundary reviews, delays in developing sludge management plans, development in technology and changes in tendering policy, most notably a move to design-build-operate (DBO) projects. As a result, there are now 35 designated Hub Centres. Only 5 of the Hub Centres are producing Class A Biosolids. These are Ringsend, Killamey, Carlow, Navan and Osberstown. Ringsend is the only Hub Centre that is fully operational, treating sludge from surrounding regions by Thermal Drying. Killamey is producing Class A Biosolids using Autothermal Thermophilic Aerobic Digestion (ATAD) but is not, as yet, treating imported sludge. The remaining three plants are producing Class A Biosolids using Alkaline Stabilisation. Anaerobic Digestion with post pasteurisation is the most common form of sludge treatment, with 11 Hub Centres proposing to use it. One plant is using ATAD, two intend to use Alkaline Stabilisation, seven have selected Thermal Drying and three have selected Composting. While the remaining plants have not decided which sludge treatment to select, this is because of incomplete Sludge Management Plans and on DBO contracts. Analysis of sludges from the Hub Centres showed that all Irish sewage sludge is safe for agricultural reuse as defined by the Waste Management Regulations {Use of Sewage Sludge in Agriculture) (S.I. 267/2001), providing that a nutrient management plan is taken into consideration and that the soil limits of the 1998 (S.I. 148/1998) Waste Management Regulations are not exceeded.
Resumo:
A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter
Resumo:
Mangoes, cv. Imperial, were exposed, in post harvest, to the following methods of ripening: 1) sawdust burning; 2) alcohol vaporization; 3) calcium carbide (acetylene), 4) vapour of ethylene; and, 5) immersion in ethefon. All methods resulted in acceleration of ripening, when compared to controls. Calcium carbide, ethelene and ethefon were the best, methods. Alcohol vaporization also showed good results sawdust burning method showing low efficiency.
Resumo:
Microbial activity and biochemical properties are important indicators of the impact of organic composting on soil. The objective of this study was to evaluate some indicators of soil microbial and biochemical processes after application of compost (household waste). A Typic Acrustox, sampled at a depth of 10 cm under Cerrado biome vegetation, was evaluated in three treatments: control (soil without organic compost amendment) and soil with two doses of domestic organic compost (10 and 20 g kg-1 soil). The following properties were evaluated: released C (C-CO2): microbial respiration 15 days after incubation; microbial biomass C (MBC); total glucose (TG); metabolic quotient (qCO2); and enzyme activity of β-glucosidase and acid and alkaline phosphatase. The application of household compost, at doses of 10 and 20 g kg-1 Typic Acrustox, resulted in significant gains in microbial activity, organic C and C stock, as evidenced by increased MBC and TG levels. On the other hand, qCO2 decreases indicated greater microbial diversity and more efficient energy use. The addition of compost, particularly the 20 g kg-1 dose, strongly influenced the enzyme β-glucosidase and phosphatase (acid and alkaline). The β-glucosidase activity was significantly increased and acid phosphatase activity increased more than the alkaline. The ratio of β-glucosidase to MBC was greater in the control than in the composted treatments which suggests that there were more enzymes in the control than in the substrate or that the addition of compost induced a great MBC increase.
Resumo:
Tannery wastes generation is increasing every year and a suitable method for tannery sludge management is necessary in order to decrease this environmental problem. The composting is recognized as a suitable method for sludge recycling.. The effect of tannery sludge compost (TSC) rates on growth, nodulation and N fixation of cowpea was investigated. Sandy and clayey soils were amended with TSC at rates of 0, 7.5, 15, 30, and 60 t ha-1. The shoot dry weight of cowpea plants 45 days after emergence (DAE) was greater in the TSC-amended than in the unamended soil. In the sandy soil, nodule dry weight increased with TSC application 45 DAE. In the clayey soil, 45 DAE, nodule dry weight decreased with TSC amendment levels greater than 7.5 t ha-1 compared to the unamended control. The application of TSC increased N accumulation in the cowpea plants. The results suggest that cowpea responds differently to TSC depending on the amendment rate and initial soil type.
Resumo:
The application of organic residues to the soil can increase soluble organic carbon (SOC) and affect the pH and electrolytic conductivity (EC) of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC), water-extractable organic carbon (WEOC), and water-extractable inorganic carbon (WEIC) in soil treated with manure (chicken, swine, and quail), sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4), organic carbon (OC- KH2PO4), and inorganic C (IC- KH2PO4) extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol) sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.