996 resultados para composite membrane


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ESR spectra of spin probes were used to monitor lipid-protein interactions in native and cholesterol-enriched microsomal membranes. In both systems composite spectra were obtained, one characteristic of bulk bilayer organization and another due to a motionally restricted population, which was ascribed to lipids in a protein microenvironment. Computer spectral subtractions revealed that cholesterol modulates the order/mobility of both populations in opposite ways, i.e., while the lipid bilayer region gives rise to more anisotropic spectra upon cholesterol enrichment, the spectra of the motionally restricted population become indicative of increased mobility and/or decreased order. These events were evidenced by measurement of both effective order parameters and correlation times. The percentages of the motionally restricted component were invariant in native and cholesterol-enriched microsomes. Variable temperature studies also indicated a lack of variation of the percentages of both spectral components, suggesting that the motionally restricted one was not due to protein aggregation. The results correlate well with the effect of cholesterol enrichment on membrane-bound enzyme kinetics and on the behavior of fluorescent probes [Castuma & Brenner (1986) Biochemistry 25, 4733-4738]. Several hypothesis are put forward to explain the molecular mechanism of the cholesterol-induced spectral changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This in vitro study evaluated the cytotoxic effects of a restorative resin composite applied to an immortalized odontoblast-cell line (MDPC-23). Seventy-two round resin discs (2-mm thick and 4 mm in diameter) were light-cured for 20 or 40 seconds and rinsed, or not, with PBS and culture medium. The resin discs were divided into four experimental groups: Group 1: Z-100/20 seconds; Group 2: Z-100/20 seconds/rinsed; Group 3: Z100/40 seconds; Group 4: Z-100/40 seconds/rinsed. Circular filter paper was used as a control material (Group 5). The round resin discs and filter papers were placed in the bottom of wells of four 24-well dishes (18 wells for each experimental and control group). MDPC-23 cells (30,000 cells/cm(2)) were plated in the wells and allowed to incubate for 72 hours. The zone of inhibition around the resin discs was measured under inverted light microscopy; the MTT assay was carried out for mitochondrial respiration and cell morphology was measured under SEM. The scores obtained from inhibition zone and MTT assay were analyzed with the Kruskal-Wallis followed by Dunnett tests. In Groups 1, 2, 3 and 4, the thickness of the inhibition zone was 1,593 +/- 12.82 mum, 403 +/- 15.49 mum, 1,516 +/- 9.81 mum and 313 +/- 13.56 mum, respectively. There was statistically significant difference among the experimental and control groups at the 0.05 level of significance. The MTT assay demonstrated that the resin discs of the experimental groups 1, 2, 3 and 4 reduced the cell metabolism by 83%, 40.1%, 75.5% and 24.5%. Only between the Groups 2 and 4 was there no statistically significant difference for mitochondrial respiration. Close to the resin discs, the MDPC-23 cells exhibited rounded shapes, with only a few cellular processes keeping the cells attached to the substrate or, even disruption of plasma membrane. Adjacent to the inhibition zone, the cultured cells exhibited multiple fine cellular processes on the cytoplasmic membrane organized in epithelioid nodules, similar to the morphology observed to the control group. Based on the results, the authors may conclude that the Z-100 resin composite light cured for 20 seconds was more cytopathic to MDPC-23 cells than Z-100 light cured for 40 seconds. The cytotoxic effects of the resin discs decreased after rinsing them with PBS and culture medium. This was confirmed by MTT assay and upon evaluation of the inhibition zone, which was narrower following rinsing of the resin discs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the production and characterization of a selective membrane useful for electronic devices. The membrane was a composite made by a thin film of plasma-polymerized HFE (methyl nonafluoro(iso)butyl ether) immersed in plasma-polymerized HMDS (hexamethyldisilazane) film, a third phase being 5 µm starch particles included in this matrix. The film was deposited on silicon substrates and its physical, chemical and adsorption characteristics were determined. Infrared and x-ray photoelectron spectroscopy analyses showed fluorine and carboxyl groups on the bulk and the surface, respectively. SEM results indicate the film is conformal even if starch is present. Optical microscopy analysis showed good resistance toward acid and base solutions. Quartz crystal microbalance indicated adsorption of polar organic compounds on ppm range. This thin film is environment-friendly and can be used as a protective layer or in electronic devices due to adsorption of volatile organic compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work of this thesis has been focused on the characterisation of inorganic membranes for the hydrogen purification from steam reforming gas. Composite membranes based on porous inorganic supports coated with palladium silver alloys and ceramic membranes have been analysed. A brief resume of theoretical laws governing transport of gases through dense and porous inorganic membranes and an overview on different methods to prepare inorganic membranes has been also reported. A description of the experimental apparatus used for the characterisation of gas permeability properties has been reported. The device used permits to evaluate transport properties in a wide range of temperatures (till 500°C) and pressures (till 15 bar). Data obtained from experimental campaigns reveal a good agreement with Sievert law for hydrogen transport through dense palladium based membranes while different transport mechanisms, such as Knudsen diffusion and Hagen-Poiseuille flow, have been observed for porous membranes and for palladium silver alloy ones with pinholes in the metal layer. Mixtures permeation experiments reveal also concentration polarisation phenomena and hydrogen permeability reduction due to carbon monoxide adsorption on metal surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unrepaired defects in the annulus fibrosus of intervertebral disks are associated with degeneration and persistent back pain. A clinical need exists for a disk repair strategy that can seal annular defects, be easily delivered during surgical procedures, and restore biomechanics with low risk of herniation. Multiple annulus repair strategies were developed using poly(trimethylene carbonate) scaffolds optimized for cell delivery, polyurethane membranes designed to prevent herniation, and fibrin-genipin adhesive tuned to annulus fibrosus shear properties. This three-part study evaluated repair strategies for biomechanical restoration, herniation risk and failure mode in torsion, bending and compression at physiological and hyper-physiological loads using a bovine injury model. Fibrin-genipin hydrogel restored some torsional stiffness, bending ROM and disk height loss, with negligible herniation risk and failure was observed histologically at the fibrin-genipin mid-substance following rigorous loading. Scaffold-based repairs partially restored biomechanics, but had high herniation risk even when stabilized with sutured membranes and failure was observed histologically at the interface between scaffold and fibrin-genipin adhesive. Fibrin-genipin was the simplest annulus fibrosus repair solution evaluated that involved an easily deliverable adhesive that filled irregularly-shaped annular defects and partially restored disk biomechanics with low herniation risk, suggesting further evaluation for disk repair may be warranted. Statement of significance Lower back pain is the leading cause of global disability and commonly caused by defects and failure of intervertebral disk tissues resulting in herniation and compression of adjacent nerves. Annulus fibrosus repair materials and techniques have not been successful due to the challenging mechanical and chemical microenvironment and the needs to restore biomechanical behaviors and promote healing with negligible herniation risk while being delivered during surgical procedures. This work addressed this challenging biomaterial and clinical problem using novel materials including an adhesive hydrogel, a scaffold capable of cell delivery, and a membrane to prevent herniation. Composite repair strategies were evaluated and optimized in quantitative three-part study that rigorously evaluated disk repair and provided a framework for evaluating alternate repair techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Low back pain is often caused by a trauma causing disc herniation and /or disc degeneration. Although there are some promising approaches for nucleus pulposus repair, the inner tissue of the intervertebral disc (IVD) so far no treatment or repair is available for annulus fibrosus (AF) injuries. Here we aimed to develop a new method to seal and repair AF injuries by using a silk fleece composite and a genipin enhanced hydrogel. Methods Bovine (b) IVDs were harvested under aseptic conditions and kept in free swelling conditions for 24h in high-glucose DMEM containing 5% bovine serum for equilibration (1). A circular 2mm biopsy punch (Polymed Medical Center, Switzerland) was used to form a reproducible defect in the AF. For filling the defect and keeping the silk composite in place a human-derived fibrin gel (Baxter Tisseel, Switzerland) enhanced with 4.2mg/ml of the cross linker genipin (Wako Chemicals GmbH, Germany) was used. The silk composite consists of a mesh- and a membrane side (Spintec Engineering GmbH, Germany); the membrane is facing outwards to form a seal. bIVDs were cultured in vitro for 14 days either under dynamic load in a custom-built bioreactor under physiological conditions (0.2MPa load and ±2° torsion at 0.2Hz for 8h/day) or static diurnal load of 0.2MPa (2). At the end of culture discs were checked for seal failure, disc height, metabolic activity, cell death by necrosis (LDH assay), DNA content and glycosaminoglycan content. Results Silk composite maintained its position throughout the 14 days of culture under loaded conditions. Although repaired discs performed slightly lower in cell activity, DNA and GAG content were in the range of the control. Also LDH resulted in similar values compared to control discs (Fig 1). Height loss in repaired discs was in the same range as for static diurnal loaded control samples. For dynamically loaded samples the decrease was comparable to the injured, unrepaired discs. Fig 1 LDH of repaired discs compared to control disc after 24h in free swelling conditions for equilibration and first three loading cycles. Conclusions Silk-genipin-fibrin reinforced hydrogel is a promising approach to close AF defects as tested by two degree of freedom loading. In further experiments cytocompatibility of genipin has to be investigated. References 1. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. 2. Walser J, Ferguson SJ, Gantenbein-Ritter B. Design of a mechanical loading device to culture intact bovine caudal motional segments of the spine under twisting motion. In: Davies J, editors. Replacing animal models: a practical guide to creating and using biomimetic alternatives. Chichester, UK: John Wiley & Sons, Ltd.; 2012. p. 89-105. Acknowledgements This project is funded by the Gerbert Rüf Stiftung project # GRS-028/13 and the Swiss National Science Project SNF #310030_153411.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new ultrafiltration membrane was developed by the incorporation of binary metal oxides inside polyethersulfone. Physico-chemical characterization of the binary metal oxides demonstrated that the presence of Ti in the TiO2?ZrO2 system results in an increase of the size of the oxides, and also their dispersity. The crystalline phases of the synthesized binary metal oxides were identified as srilankite and zirconium titanium oxide. The effect of the addition of ZrO2 can be expressed in terms of the inhibition of crystal growth of anocrystalline TiO2 during the synthesis process. For photocatalytic applications the band gap of the synthesized semiconductors was determined, confirming a gradual increase (blue shift) in the band gap as the amount of Zr loading increases. Distinct distributions of binary metal oxides were found along the permeation axis for the synthesized membranes. Particles with Ti are more uniformly dispersed throughout the membrane cross-section. The physico-chemical characterization of membranes showed a strong correlation between some key membrane properties and the spatial particle distribution in the membrane structure. The proximity of metal oxide fillers to the membrane surface determines the hydrophilicity and porosity of modified membranes. Membranes incorporating binary metal oxides were found to be promising candidates for wastewater treatment by ultrafiltration, considering the observed improvement influx and anti-fouling properties of doped membranes. Multi-run fouling tests of doped membranes confirmed the stability of permeation through membranes embedded with binary TiO2?ZrO2 particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on Reddy's third-order theory, the first-order theory and the classical theory, exact explicit eigenvalues are found for compression buckling, thermal buckling and vibration of laminated plates via analogy with membrane vibration, These results apply to symmetrically laminated composite plates with transversely isotropic laminae and simply supported polygonal edges, Comprehensive consideration of a Winkler-Pasternak elastic foundation, a hydrostatic inplane force, an initial temperature increment and rotary inertias is incorporated. Bridged by the vibrating membrane, exact correspondences are readily established between any pairs of buckling and vibration eigenvalues associated with different theories. Positive definiteness of the critical hydrostatic pressure at buckling, the thermobukling temperature increment and, in the range of either tension loading or compression loading prior to occurrence of buckling, the natural vibration frequency is proved. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript presents three approaches : analytical, experimental and numerical, to study the behaviour of a flexible membrane tidal energy converter. This technology, developed by the EEL Energy company, is based on periodic deformations of a pre-stressed flexible structure. Energy converters, located on each side of the device, are set into motion by the wave-like motion. In the analytical model, the membrane is represented by a linear beam model at one dimension and the flow by a 3 dimensions potential fluid. The fluid forces are evaluated by the elongated body theory. Energy is dissipated all over the length of the membrane. A 20th scale experimental prototype has been designed with micro-dampers to simulate the power take-off. Trials have allowed to validate the undulating membrane energy converter concept. A numerical model has been developed. Each element of the device is represented and the energy dissipation is done by dampers element with a damping law linear to damper velocity. Comparison of the three approaches validates their ability to represent the membrane behaviour without damping. The energy dissipation applied with the analytical model is clearly different from the two other models because of the location (where the energy is dissipated) and damping law. The two others show a similar behaviour and the same order of power take off repartition but value of power take off are underestimated by the numerical model. This three approaches have allowed to put forward key-parameters on which depend the behaviour of the membrane and the parametric study highlights the complementarity and the advantage of developing three approaches in parallel to answer industrial optimization problems. To make the link between trials in flume tank and sea trials, a 1/6th prototype has been built. To do so, the change of scale was studied. The behaviour of both prototypes is compared and differences could be explained by differences of boundary conditions and confinement effects. To evaluated membrane long-term behaviour at sea, a method of ageing accelerated by temperature and fatigue tests have been carried out on prototype materials samples submerged in sea water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher than 99.99%. This is the first time that an investigation demonstrates how the permeation characteristics of these membranes is directly related to data from spectral, morphological and surface charge analyses, which provide new insights on the impact of plasma treatments on both, the surface charge and roughness, of PTFE porous materials.