925 resultados para complexity regularization
Resumo:
Introduction: Pain and beliefs have an influence on the patient's course in rehabilitation, pain causes fears and fears influence pain perception. The aim of this study is to understand pain and beliefs evolutions during rehabilitation taking into account of bio-psycho-social complexity.Patients and methods: 631 consecutive patients admitted in rehabilitation after a musculoskeletal traumatism were included and assessed at admission and at discharge. Pain was measured by VAS (Visual Analogical Scale), bio-psycho-social complexity by Intermed scale, and beliefs by judgement on Lickert scales. Four kinds of beliefs were evaluated: fear of a severe origin of pain, fear of movement, fear of pain and feeling of distress (loss of control). The association between the changes in pain and beliefs during the hospitalization was assessed by linear regressions.Results: After adjustment for gender, age, education and native language, patients with a decrease in pain during rehabilitation have higher probability of decreasing their fears. For the distress feeling, this relationship is weaker among bio-psycho-socially complex patients (odds-ratio 1.22 for each decreasing of 10mm/100 VAS) than among non-complex patients (OR 1.47). Patients with a pain decrease of 30% or more during hospitalization have higher probability of seeing their fears decrease, this relationship being stronger in complex patient for fear of a severe origin of pain.Discussion: The relationships between evolution of pain and beliefs move in the same direction. The higher a patient feels pain, the less they could be able to modify their dysfunctional beliefs. When the pain diminishes of 30% or more, the probability to challenge the beliefs is increased. The prognostic with regard to feeling of distress and fear of a severe origin of pain, is worse among bio-psycho-socially complex patients.
Resumo:
Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.
Resumo:
We study the complexity of rationalizing choice behavior. We do so by analyzing two polar cases, and a number of intermediate ones. In our most structured case, that is where choice behavior is defined in universal choice domains and satisfies the "weak axiom of revealed preference," finding the complete preorder rationalizing choice behavior is a simple matter. In the polar case, where no restriction whatsoever is imposed, either on choice behavior or on choice domain, finding the complete preordersthat rationalize behavior turns out to be intractable. We show that the task of finding the rationalizing complete preorders is equivalent to a graph problem. This allows the search for existing algorithms in the graph theory literature, for the rationalization of choice.
Resumo:
MOTIVATION: High-throughput sequencing technologies enable the genome-wide analysis of the impact of genetic variation on molecular phenotypes at unprecedented resolution. However, although powerful, these technologies can also introduce unexpected artifacts. Results: We investigated the impact of library amplification bias on the identification of allele-specific (AS) molecular events from high-throughput sequencing data derived from chromatin immunoprecipitation assays (ChIP-seq). Putative AS DNA binding activity for RNA polymerase II was determined using ChIP-seq data derived from lymphoblastoid cell lines of two parent-daughter trios. We found that, at high-sequencing depth, many significant AS binding sites suffered from an amplification bias, as evidenced by a larger number of clonal reads representing one of the two alleles. To alleviate this bias, we devised an amplification bias detection strategy, which filters out sites with low read complexity and sites featuring a significant excess of clonal reads. This method will be useful for AS analyses involving ChIP-seq and other functional sequencing assays.
Resumo:
Sarcomas are heterogeneous and aggressive mesenchymal tumors. Histological grading has so far been the best predictor for metastasis-free survival, but it has several limitations, such as moderate reproducibility and poor prognostic value for some histological types. To improve patient grading, we performed genomic and expression profiling in a training set of 183 sarcomas and established a prognostic gene expression signature, complexity index in sarcomas (CINSARC), composed of 67 genes related to mitosis and chromosome management. In a multivariate analysis, CINSARC predicts metastasis outcome in the training set and in an independent 127 sarcomas validation set. It is superior to the Fédération Francaise des Centres de Lutte Contre le Cancer grading system in determining metastatic outcome for sarcoma patients. Furthermore, it also predicts outcome for gastrointestinal stromal tumors (GISTs), breast carcinomas and lymphomas. Application of the signature will permit more selective use of adjuvant therapies for people with sarcomas, leading to decreased iatrogenic morbidity and improved outcomes for such individuals.
Resumo:
Background: The relationship between phoneme awareness, rapid automatized naming (RAN), verbal short-term/working memory (ST/WM) and diagnostic category is investigated in control and dyslexic children, and the extent to which this depends on orthographic complexity. Methods: General cognitive, phonological and literacy skills were tested in 1,138 control and 1,114 dyslexic children speaking six different languages spanning a large range of orthographic complexity (Finnish, Hungarian, German, Dutch, French, English). Results: Phoneme deletion and RAN were strong concurrent predictors of developmental dyslexia, while verbal ST/WM and general verbal abilities played a comparatively minor role. In logistic regression models, more participants were classified correctly when orthography was more complex. The impact of phoneme deletion and RAN-digits was stronger in complex than in less complex orthographies. Conclusions: Findings are largely consistent with the literature on predictors of dyslexia and literacy skills, while uniquely demonstrating how orthographic complexity exacerbates some symptoms of dyslexia.
Resumo:
RATIONALE: This study was intended to document the frequency of care complexity in liver transplant candidates, and its association with mood disturbance and poor health-related quality of life (HRQoL). METHODS: Consecutive patients fulfilling inclusion criteria, recruited in three European hospitals, were assessed with INTERMED, a reliable and valid method for the early assessment of bio-psychosocial health risks and needs. Blind to the results, they were also assessed with the Hospital Anxiety and Depression Scale (HADS). HRQoL was documented with the EuroQol and the SF36. Statistical analysis included multivariate and multilevel techniques. RESULTS: Among patients fulfilling inclusion criteria, 60 patients (75.9%) completed the protocol and 38.3% of them were identified as "complex" by INTERMED, but significant between-center differences were found. In support of the working hypothesis, INTERMED scores were significantly associated with all measures of both the SF36 and the EuroQol, and also with the HADS. A one point increase in the INTERMED score results in a reduction in 0.93 points in EuroQol and a 20% increase in HADS score. CONCLUSIONS: INTERMED-measured case complexity is frequent in liver transplant candidates but varies widely between centers. The use of this method captures in one instrument multiple domains of patient status, including mood disturbances and reduced HRQoL.
Resumo:
AbstractIn addition to genetic changes affecting the function of gene products, changes in gene expression have been suggested to underlie many or even most of the phenotypic differences among mammals. However, detailed gene expression comparisons were, until recently, restricted to closely related species, owing to technological limitations. Thus, we took advantage of the latest technologies (RNA-Seq) to generate extensive qualitative and quantitative transcriptome data for a unique collection of somatic and germline tissues from representatives of all major mammalian lineages (placental mammals, marsupials and monotremes) and birds, the evolutionary outgroup.In the first major project of my thesis, we performed global comparative analyses of gene expression levels based on these data. Our analyses provided fundamental insights into the dynamics of transcriptome change during mammalian evolution (e.g., the rate of expression change across species, tissues and chromosomes) and allowed the exploration of the functional relevance and phenotypic implications of transcription changes at a genome-wide scale (e.g., we identified numerous potentially selectively driven expression switches).In a second project of my thesis, which was also based on the unique transcriptome data generated in the context of the first project we focused on the evolution of alternative splicing in mammals. Alternative splicing contributes to transcriptome complexity by generating several transcript isoforms from a single gene, which can, thus, perform various functions. To complete the global comparative analysis of gene expression changes, we explored patterns of alternative splicing evolution. This work uncovered several general and unexpected patterns of alternative splicing evolution (e.g., we found that alternative splicing evolves extremely rapidly) as well as a large number of conserved alternative isoforms that may be crucial for the functioning of mammalian organs.Finally, the third and final project of my PhD consisted in analyzing in detail the unique functional and evolutionary properties of the testis by exploring the extent of its transcriptome complexity. This organ was previously shown to evolve rapidly both at the phenotypic and molecular level, apparently because of the specific pressures that act on this organ and are associated with its reproductive function. Moreover, my analyses of the amniote tissue transcriptome data described above, revealed strikingly widespread transcriptional activity of both functional and nonfunctional genomic elements in the testis compared to the other organs. To elucidate the cellular source and mechanisms underlying this promiscuous transcription in the testis, we generated deep coverage RNA-Seq data for all major testis cell types as well as epigenetic data (DNA and histone methylation) using the mouse as model system. The integration of these complete dataset revealed that meiotic and especially post-meiotic germ cells are the major contributors to the widespread functional and nonfunctional transcriptome complexity of the testis, and that this "promiscuous" spermatogenic transcription is resulting, at least partially, from an overall transcriptionally permissive chromatin state. We hypothesize that this particular open state of the chromatin results from the extensive chromatin remodeling that occurs during spermatogenesis which ultimately leads to the replacement of histones by protamines in the mature spermatozoa. Our results have important functional and evolutionary implications (e.g., regarding new gene birth and testicular gene expression evolution).Generally, these three large-scale projects of my thesis provide complete and massive datasets that constitute valuables resources for further functional and evolutionary analyses of mammalian genomes.
Resumo:
For a few years now, the study of quantum field theories in partially compactified space-time manifolds has acquired increasing importance in several domains of quantum physics. Let me just mention the issues of dimensional reduction and spontaneous compactification, and the multiple questions associated with the study of quantum field theories in the presence of boundaries (like the Casimir effect) and on curved space-time (manifolds with curvature and nontrivial topology), a step towards quantum gravity.
Resumo:
Peptide toxins synthesized by venomous animals have been extensively studied in the last decades. To be useful to the scientific community, this knowledge has been stored, annotated and made easy to retrieve by several databases. The aim of this article is to present what type of information users can access from each database. ArachnoServer and ConoServer focus on spider toxins and cone snail toxins, respectively. UniProtKB, a generalist protein knowledgebase, has an animal toxin-dedicated annotation program that includes toxins from all venomous animals. Finally, the ATDB metadatabase compiles data and annotations from other databases and provides toxin ontology.
Resumo:
Astrocyte Ca(2+) signalling has been proposed to link neuronal information in different spatial-temporal dimensions to achieve a higher level of brain integration. However, some discrepancies in the results of recent studies challenge this view and highlight key insufficiencies in our current understanding. In parallel, new experimental approaches that enable the study of astrocyte physiology at higher spatial-temporal resolution in intact brain preparations are beginning to reveal an unexpected level of compartmentalization and sophistication in astrocytic Ca(2+) dynamics. This newly revealed complexity needs to be attentively considered in order to understand how astrocytes may contribute to brain information processing.
Resumo:
Peptide toxins synthesized by venomous animals have been extensively studied in the last decades. To be useful to the scientific community, this knowledge has been stored, annotated and made easy to retrieve by several databases. The aim of this article is to present what type of information users can access from each database. ArachnoServer and ConoServer focus on spider toxins and cone snail toxins, respectively. UniProtKB, a generalist protein knowledgebase, has an animal toxin-dedicated annotation program that includes toxins from all venomous animals. Finally, the ATDB metadatabase compiles data and annotations from other databases and provides toxin ontology.