966 resultados para clustering quality metrics
Resumo:
Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.
Resumo:
Establishing metrics to assess machine translation (MT) systems automatically is now crucial owing to the widespread use of MT over the web. In this study we show that such evaluation can be done by modeling text as complex networks. Specifically, we extend our previous work by employing additional metrics of complex networks, whose results were used as input for machine learning methods and allowed MT texts of distinct qualities to be distinguished. Also shown is that the node-to-node mapping between source and target texts (English-Portuguese and Spanish-Portuguese pairs) can be improved by adding further hierarchical levels for the metrics out-degree, in-degree, hierarchical common degree, cluster coefficient, inter-ring degree, intra-ring degree and convergence ratio. The results presented here amount to a proof-of-principle that the possible capturing of a wider context with the hierarchical levels may be combined with machine learning methods to yield an approach for assessing the quality of MT systems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work we present a new clustering method that groups up points of a data set in classes. The method is based in a algorithm to link auxiliary clusters that are obtained using traditional vector quantization techniques. It is described some approaches during the development of the work that are based in measures of distances or dissimilarities (divergence) between the auxiliary clusters. This new method uses only two a priori information, the number of auxiliary clusters Na and a threshold distance dt that will be used to decide about the linkage or not of the auxiliary clusters. The number os classes could be automatically found by the method, that do it based in the chosen threshold distance dt, or it is given as additional information to help in the choice of the correct threshold. Some analysis are made and the results are compared with traditional clustering methods. In this work different dissimilarities metrics are analyzed and a new one is proposed based on the concept of negentropy. Besides grouping points of a set in classes, it is proposed a method to statistical modeling the classes aiming to obtain a expression to the probability of a point to belong to one of the classes. Experiments with several values of Na e dt are made in tests sets and the results are analyzed aiming to study the robustness of the method and to consider heuristics to the choice of the correct threshold. During this work it is explored the aspects of information theory applied to the calculation of the divergences. It will be explored specifically the different measures of information and divergence using the Rényi entropy. The results using the different metrics are compared and commented. The work also has appendix where are exposed real applications using the proposed method
Resumo:
Background: Since establishing universal free access to antiretroviral therapy in 1996, the Brazilian Health System has increased the number of centers providing HIV/AIDS outpatient care from 33 to 540. There had been no formal monitoring of the quality of these services until a survey of 336 AIDS health centers across 7 Brazilian states was undertaken in 2002. Managers of the services were asked to assess their clinics according to parameters of service inputs and service delivery processes. This report analyzes the survey results and identifies predictors of the overall quality of service delivery.Methods: The survey involved completion of a multiple-choice questionnaire comprising 107 parameters of service inputs and processes of delivering care, with responses assessed according to their likely impact on service quality using a 3-point scale. K-means clustering was used to group these services according to their scored responses. Logistic regression analysis was performed to identify predictors of high service quality.Results: The questionnaire was completed by 95.8% (322) of the managers of the sites surveyed. Most sites scored about 50% of the benchmark expectation. K-means clustering analysis identified four quality levels within which services could be grouped: 76 services (24%) were classed as level 1 (best), 53 (16%) as level 2 (medium), 113 (35%) as level 3 (poor), and 80 (25%) as level 4 (very poor). Parameters of service delivery processes were more important than those relating to service inputs for determining the quality classification. Predictors of quality services included larger care sites, specialization for HIV/AIDS, and location within large municipalities.Conclusion: The survey demonstrated highly variable levels of HIV/AIDS service quality across the sites. Many sites were found to have deficiencies in the processes of service delivery processes that could benefit from quality improvement initiatives. These findings could have implications for how HIV/AIDS services are planned in Brazil to achieve quality standards, such as for where service sites should be located, their size and staffing requirements. A set of service delivery indicators has been identified that could be used for routine monitoring of HIV/AIDS service delivery for HIV/AIDS in Brazil (and potentially in other similar settings).
Resumo:
The quality and the power of human activities affect the external environment in different ways that can be measured and evaluated by means of several approaches and indicators. While the scientific community has been publishing several proposals for sustainable development indicators, there is still no consensus regarding the best approach to the use of these indicators and their reliability to measure sustainability. It is important, therefore, to question the effectiveness of sustainable development indicators in an effort to continue in the search for sustainability. This paper compares the results obtained with emergy accounting with five global Sustainability Metrics (SMs) proposed in the literature to verify if metrics are communicating coherent and similar information to guide decision makers towards sustainable development. Results obtained using emergy indices are discussed with the aid of emergy ternary diagrams. Metrics are confronted with emergy results, and the degree of variability among them is analyzed using a correlation matrix created for the Mercosur nations. The contrast of results clearly shows that metrics arrive at different interpretations about the sustainability of the nations studied, but also that some metrics may be grouped and used more prudently. Mercosur is presented as a case study to highlight and explain the discrepancies and similarities among Sustainability Metrics, and to expose the extent of emergy accounting. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require realtime video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.
Resumo:
In this paper we deal with the problem of boosting the Optimum-Path Forest (OPF) clustering approach using evolutionary-based optimization techniques. As the OPF classifier performs an exhaustive search to find out the size of sample's neighborhood that allows it to reach the minimum graph cut as a quality measure, we compared several optimization techniques that can obtain close graph cut values to the ones obtained by brute force. Experiments in two public datasets in the context of unsupervised network intrusion detection have showed the evolutionary optimization techniques can find suitable values for the neighborhood faster than the exhaustive search. Additionally, we have showed that it is not necessary to employ many agents for such task, since the neighborhood size is defined by discrete values, with constrain the set of possible solution to a few ones.
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.
Resumo:
This work proposes a method for data clustering based on complex networks theory. A data set is represented as a network by considering different metrics to establish the connection between each pair of objects. The clusters are obtained by taking into account five community detection algorithms. The network-based clustering approach is applied in two real-world databases and two sets of artificially generated data. The obtained results suggest that the exponential of the Minkowski distance is the most suitable metric to quantify the similarities between pairs of objects. In addition, the community identification method based on the greedy optimization provides the best cluster solution. We compare the network-based clustering approach with some traditional clustering algorithms and verify that it provides the lowest classification error rate. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
There is a wide range of video services over complex transmission networks, and in some cases end users fail to receive an acceptable quality level. In this paper, the different factors that degrade users' quality of experience (QoE) in video streaming service that use TCP as transmission protocol are studied. In this specific service, impairment factors are: number of pauses, their duration and temporal location. In order to measure the effect that each temporal segment has in the overall video quality, subjective tests. Because current subjective test methodologies are not adequate to assess video streaming over TCP, some recommendations are provided here. At the application layer, a customized player is used to evaluate the behavior of player buffer, and consequently, the end user QoE. Video subjective test results demonstrate that there is a close correlation between application parameters and subjective scores. Based on this fact, a new metrics named VsQM is defined, which considers the importance of temporal location of pauses to assess the user QoE of video streaming service. A useful application scenario is also presented, in which the metrics proposed herein is used to improve video services(1).
Resumo:
The automatic disambiguation of word senses (i.e., the identification of which of the meanings is used in a given context for a word that has multiple meanings) is essential for such applications as machine translation and information retrieval, and represents a key step for developing the so-called Semantic Web. Humans disambiguate words in a straightforward fashion, but this does not apply to computers. In this paper we address the problem of Word Sense Disambiguation (WSD) by treating texts as complex networks, and show that word senses can be distinguished upon characterizing the local structure around ambiguous words. Our goal was not to obtain the best possible disambiguation system, but we nevertheless found that in half of the cases our approach outperforms traditional shallow methods. We show that the hierarchical connectivity and clustering of words are usually the most relevant features for WSD. The results reported here shed light on the relationship between semantic and structural parameters of complex networks. They also indicate that when combined with traditional techniques the complex network approach may be useful to enhance the discrimination of senses in large texts. Copyright (C) EPLA, 2012
Resumo:
This paper addresses the m-machine no-wait flow shop problem where the set-up time of a job is separated from its processing time. The performance measure considered is the total flowtime. A new hybrid metaheuristic Genetic Algorithm-Cluster Search is proposed to solve the scheduling problem. The performance of the proposed method is evaluated and the results are compared with the best method reported in the literature. Experimental tests show superiority of the new method for the test problems set, regarding the solution quality. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background Regardless the regulatory function of microRNAs (miRNA), their differential expression pattern has been used to define miRNA signatures and to disclose disease biomarkers. To address the question of whether patients presenting the different types of diabetes mellitus could be distinguished on the basis of their miRNA and mRNA expression profiling, we obtained peripheral blood mononuclear cell (PBMC) RNAs from 7 type 1 (T1D), 7 type 2 (T2D), and 6 gestational diabetes (GDM) patients, which were hybridized to Agilent miRNA and mRNA microarrays. Data quantification and quality control were obtained using the Feature Extraction software, and data distribution was normalized using quantile function implemented in the Aroma light package. Differentially expressed miRNAs/mRNAs were identified using Rank products, comparing T1DxGDM, T2DxGDM and T1DxT2D. Hierarchical clustering was performed using the average linkage criterion with Pearson uncentered distance as metrics. Results The use of the same microarrays platform permitted the identification of sets of shared or specific miRNAs/mRNA interaction for each type of diabetes. Nine miRNAs (hsa-miR-126, hsa-miR-1307, hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-144, hsa-miR-199a-5p, hsa-miR-27a, hsa-miR-29b, and hsa-miR-342-3p) were shared among T1D, T2D and GDM, and additional specific miRNAs were identified for T1D (20 miRNAs), T2D (14) and GDM (19) patients. ROC curves allowed the identification of specific and relevant (greater AUC values) miRNAs for each type of diabetes, including: i) hsa-miR-1274a, hsa-miR-1274b and hsa-let-7f for T1D; ii) hsa-miR-222, hsa-miR-30e and hsa-miR-140-3p for T2D, and iii) hsa-miR-181a and hsa-miR-1268 for GDM. Many of these miRNAs targeted mRNAs associated with diabetes pathogenesis. Conclusions These results indicate that PBMC can be used as reporter cells to characterize the miRNA expression profiling disclosed by the different diabetes mellitus manifestations. Shared miRNAs may characterize diabetes as a metabolic and inflammatory disorder, whereas specific miRNAs may represent biological markers for each type of diabetes, deserving further attention.
Resumo:
Skype is one of the well-known applications that has guided the evolution of real-time video streaming and has become one of the most used software in everyday life. It provides VoIP audio/video calls as well as messaging chat and file transfer. Many versions are available covering all the principal operating systems like Windows, Macintosh and Linux but also mobile systems. Voice quality decreed Skype success since its birth in 2003 and peer-to-peer architecture has allowed worldwide diffusion. After video call introduction in 2006 Skype became a complete solution to communicate between two or more people. As a primarily video conferencing application, Skype assumes certain characteristics of the delivered video to optimize its perceived quality. However in the last years, and with the recent release of SkypeKit1, many new Skype video-enabled devices came out especially in the mobile world. This forced a change to the traditional recording, streaming and receiving settings allowing for a wide range of network and content dynamics. Video calls are not anymore based on static ‘chatting’ but mobile devices have opened new possibilities and can be used in several scenarios. For instance, lecture streaming or one-to-one mobile video conferences exhibit more dynamics as both caller and callee might be on move. Most of these cases are different from “head&shoulder” only content. Therefore, Skype needs to optimize its video streaming engine to cover more video types. Heterogeneous connections require different behaviors and solutions and Skype must face with this variety to maintain a certain quality independently from connection used. Part of the present work will be focused on analyzing Skype behavior depending on video content. Since Skype protocol is proprietary most of the studies so far have tried to characterize its traffic and to reverse engineer its protocol. However, questions related to the behavior of Skype, especially on quality as perceived by users, remain unanswered. We will study Skype video codecs capabilities and video quality assessment. Another motivation of our work is the design of a mechanism that estimates the perceived cost of network conditions on Skype video delivery. To this extent we will try to assess in an objective way the impact of network impairments on the perceived quality of a Skype video call. Traditional video streaming schemes lack the necessary flexibility and adaptivity that Skype tries to achieve at the edge of a network. Our contribution will lye on a testbed and consequent objective video quality analysis that we will carry out on input videos. We will stream raw video files with Skype via an impaired channel and then we will record it at the receiver side to analyze with objective quality of experience metrics.
Resumo:
We have investigated the use of hierarchical clustering of flow cytometry data to classify samples of conventional central chondrosarcoma, a malignant cartilage forming tumor of uncertain cellular origin, according to similarities with surface marker profiles of several known cell types. Human primary chondrosarcoma cells, articular chondrocytes, mesenchymal stem cells, fibroblasts, and a panel of tumor cell lines from chondrocytic or epithelial origin were clustered based on the expression profile of eleven surface markers. For clustering, eight hierarchical clustering algorithms, three distance metrics, as well as several approaches for data preprocessing, including multivariate outlier detection, logarithmic transformation, and z-score normalization, were systematically evaluated. By selecting clustering approaches shown to give reproducible results for cluster recovery of known cell types, primary conventional central chondrosacoma cells could be grouped in two main clusters with distinctive marker expression signatures: one group clustering together with mesenchymal stem cells (CD49b-high/CD10-low/CD221-high) and a second group clustering close to fibroblasts (CD49b-low/CD10-high/CD221-low). Hierarchical clustering also revealed substantial differences between primary conventional central chondrosarcoma cells and established chondrosarcoma cell lines, with the latter not only segregating apart from primary tumor cells and normal tissue cells, but clustering together with cell lines from epithelial lineage. Our study provides a foundation for the use of hierarchical clustering applied to flow cytometry data as a powerful tool to classify samples according to marker expression patterns, which could lead to uncover new cancer subtypes.