971 resultados para clay soil
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
The infestation of weeds is a major biotic factor in the agroecosystem of cane sugar that may interfere in development and crop productivity. This study aimed to evaluate the potential for leaching and residual effects of the herbicide amicarbazone in contrasting soils. Samples were Quartzarenic Neosol (NR - sandy texture) and Red Latosol (LR - clay texture). For the leaching potential, after application of herbicide amicarbazone (NR 1.05 kg ha(-1) and LR 1.40 kg ha(-1)), layers of 0, 20, 40, 60, 80 and 100 mm of water were applied to soil columns. We evaluated the residual effect after the permanence of the herbicide in soil of clay texture and sandy for periods of 0, 25, 50, 75 and 100 days after application (DAA) of amicarbazone (0, 1.05, 1.40 kg ha(-1)) treatments. The amicarbazone started showing high leaching from the 60 mm layer of water in sandy texture soils, evidencing a shorter residual effect. In clay soil, slides from 20 to 80 mm of water reduced the biomass until a depth of 5-10 cm, with the use of this herbicide. Based on these results, we conclude that the amicarbazone showed higher leaching and lower residual effects in sandy soil. The residual effect of amicarbazone was prolonged as the content of clay and organic matter present in the soil increased.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Potassium (K) is the second nutrient that is required in larger amounts by soybean crop. With the use of high doses of that nutrient and increase of no-tillage areas in last years, some changes occurred in ways of this nutrient application, as well as the introduction of cover crops in the system for straw formation. Due those facts, the aim with this work was to study doses and times of potassium application for soybean sowed as succession for cover crops in no-tillage system, in a clayey Distrofic Red Latosol, in cerrado region. The experimental design was a randomized block with treatments arranged in 3x3x5 factorial scheme, with the following factors, cover crops: Pearl millet (Pennisetum glaucum) and Proso millet (Panicum miliaceum) and a control (fallow area), rates of K2O (0, 50 e 100 kg ha(-1)) and K2O application forms (100% in the cover crops; 100% at sowing of soybean; 100% in topdressing in soybean; 50% at sowing cover crops + 50% at soybean sowing; 50% at soybean sowing + 50% in topdressing in the soybean) with four replicates. The Pennisetum glaucum as soybean predecessor crop yields higher dry matter content than the Panicum miliaceum in a short period of time. In clay soil with high content of potassium there was no response to the applied potassium levels. Full doses of potassium maintenance fertilization can be applied in the predecessor cover crop, at sowing or topdressing in soybean crop.
Resumo:
The understanding and quantification of the impact of tillage systems in their physical quality are fundamental in the development of sustainable agricultural systems. This study aimed to evaluate the quality of an Oxisol under conventional tillage (CT) and no-tillage system (NT), through different physical indicators. The management systems were: CT and NT for seven or eight consecutive years (medium textured soil) and CT and NT by nine and ten consecutive years (clay soil). Were determined, at the layers 0-0.10, 0.10-0.20; 0.20-0.30 m, soil resistance to penetration, total soil porosity, macroporosity and microporosity, soil water retention, S index, soil bulk density, maximum density and relative bulk density. Was observed great variation of soil resistance to penetration throughout the soybean and corn cycles, with its highest values were found in the surface layers. The NT showed greater resistance to penetration. Among the management systems, the results against indicators of soil physical quality were similar.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The quality and efficiency in straw cutting are determinants in the sowing process, according to the occurrence of "tamp" and stops, the magnitude of the straw removal or even the known effects of the seed "envelopment" where the cutting mechanism can not cut the remaining straw. Thus, the objective of this study was to evaluate the performance of different mechanisms for straw cutting of a seeder individualized in different amounts of crop coverage artificially added in a clay soil. The experiment was conducted at Unesp – Sao Paulo State University in the Experimental Farm Lageado, belonging to the College of Agricultural Sciences - Unesp, Botucatu. The experimental design was split plot with four replications, with main plots consisting of five quantities of black oat straw, in area with no-tillage system and subplots of three opening furrows mechanisms, which are: plane disk (PD), corrugated disk (CD) and wavy disk (WD). The wavy disk provided greater rolling resistance, reducing the speed of the set (tractor and equipment). The plane cutting disk showed the highest values of mobilized soil area, deeper penetration into the soil, requiring lower values of vertical force and higher values of lateral force. Regarding the type of waste and doses used, they offered no resistance to cutting and there was no change in the horizontal force on straw.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.
Resumo:
Serpentinite seamounts in the Mariana forearc have been explained as diapirs rising from the Benioff zone. This hypothesis predicts that the serpentinites should have low strengths as well as low densities relative to the surrounding rocks. Drilling during Leg 125 showed that the materials forming Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc are water-charged serpentinite muds of density <2 g/cm**3. Wykeham-Farrance torsion-vane tests showed that they are plastic solids with a rheology that bears many similarities to the idealized Cam clay soil model and is well described by critical-state soil mechanics. The serpentinite muds have ultimate strengths of 1.3 to 273.7 kPa and yield strengths of approximately 1.0 to 50 kPa. These muds thus are orders of magnitude weaker than salt and are, in fact, comparable in density and strength to common deep-sea clay muds. Such weak and low-density materials easily become diapiric. Serpentinite muds from the summit of Conical Seamount are weaker and more ductile than those on its flanks or on Torishima Forearc Seamount. Moreover, the summit muds do not contain the pronounced pure- and simple-shear fabrics that characterize those on the seamount flanks. The seamounts are morphologically similar to shield volcanoes, and anastomosing serpentinite debris flows descending from their summits are similar in map view to pahoehoe flows. These morphologic features, together with the physical properties of the muds and their similarities to other oceanic muds and the geochemistry of the entrained waters, suggest that many forearc serpentinite seamounts are gigantic (10-20 km wide, 1.5-2.0 km high) mud volcanoes that formed by the eruption of highly liquid serpentinite muds. Torishima Forearc Seamount, which is blanketed by more ìnormalî pelagic/volcaniclastic sediment, has probably been inactive since the Miocene. Conical Seamount, which seems to consist entirely of serpentinite mud and is venting fresh water of unusual chemistry from its summit, is presently active. Muds from the flanks of Conical Seamount are stronger and more brittle than those from the summit site, and muds from Torishima Forearc Seamount are stronger yet; this suggests that the serpentinite debris flows are compacted and dewatered as they mature. The shear fabrics probably result from downslope creep and flow, but may also be inherited.
Resumo:
The hydraulic piston coring device (HPC-15) allows recovery of deep ocean sediments with minimal disturbance. The device was used during Leg 72 of the Deep Sea Drilling Project (DSDP) aboard the Glomar Challenger. Core samples were recovered from bore holes in the Rio Grande Rise in the southwest Atlantic Ocean. Relatively undisturbed sediment cores were obtained from Holes 515A, 516, 517, and 518. The results of shipboard physical property measurements and on-shore geotechnical laboratory tests on these cores are presented in this chapter. A limited number of 0.3 m cores were obtained and used in a series of geotechnical tests, including one-dimensional consolidation, direct shear, Atterburg limit, particle size analysis, and specific gravity tests. Throughout the testing program, attention was focused on assessment of sample disturbance associated with the HPC-15 coring device. The HPC-15 device limits sample disturbance reasonably well in terrigenous muds (clays). However, sample disturbance associated with coring calcareous sediments (nannofossil-foraminifer oozes) is severe. The noncohesive, granular behavior of the calcareous sediments is vulnerable to severe disturbance, because of the design of the sampling head on the device at the time of Leg 72. A number of modifications to the sampling head design are recommended and discussed in this chapter. The modifications will improve sample quality for testing purposes and provide longer unbroken core samples by reducing friction between the sediment column and the sampling tool.