985 resultados para chronology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The short-lived 182Hf–182W isotope system can provide powerful constraints on the timescales of planetary core formation, but its application to iron meteorites is hampered by neutron capture reactions on W isotopes resulting from exposure to galactic cosmic rays. Here we show that Pt isotopes in magmatic iron meteorites are also affected by capture of (epi)thermal neutrons and that the Pt isotope variations are correlated with variations in 182W/184W. This makes Pt isotopes a sensitive neutron dosimeter for correcting cosmic ray-induced W isotope shifts. The pre-exposure 182W/184W derived from the Pt–W isotope correlations of the IID, IVA and IVB iron meteorites are higher than most previous estimates and are more radiogenic than the initial 182W/184W of Ca–Al-rich inclusions (CAI). The Hf–W model ages for core formation range from +1.6±1.0 million years (Ma; for the IVA irons) to +2.7±1.3 Ma after CAI formation (for the IID irons), indicating that there was a time gap of at least ∼1 Ma between CAI formation and metal segregation in the parent bodies of some iron meteorites. From the Hf–W ages a time limit of <1.5–2 Ma after CAI formation can be inferred for the accretion of the IID, IVA and IVB iron meteorite parent bodies, consistent with earlier conclusions that the accretion of differentiated planetesimals predated that of most chondrite parent bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen-isotope variations were analyzed on bulk samples of shallow-water lake marl from Gerzensee, Switzerland, in order to evaluate major and minor climatic oscillations during the late-glacial. To highlight the overall signature of the Gerzensee δ18O record, δ18O records of four parallel sediment cores were first correlated by synchronizing major isotope shifts and pollen abundances. Then the records were stacked with a weighting depending on the differing sampling resolution. To develop a precise chronology, the δ18O-stack was then correlated with the NGRIP δ18O record applying a Monte Carlo simulation, relying on the assumption that the shifts in δ18O were climate-driven and synchronous in both archives. The established chronology on the GICC05 time scale is the basis for (1) comparing the δ18O changes recorded in Gerzensee with observed climatic and environmental fluctuations over the whole North Atlantic region, and (2) comparing sedimentological and biological changes during the rapid warming with smaller climatic variations during the Bølling/Allerød period. The δ18O record of Gerzensee is characterized by two major isotope shifts at the onset and at the termination of the Bølling/Allerød warm period, as well as four intervening negative shifts labeled GI-1e2, d, c2, and b, which show a shift of one third to one fourth of the major δ18O shifts at the beginning and end of the Bølling/Allerød. Despite some inconsistency in terminology, these oscillations can be observed in various climatic proxies over wide regions in the North Atlantic region, especially in reconstructed colder temperatures, and they seem to be caused by hemispheric climatic variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reconstruct the timing of ice flow reconfiguration and deglaciation of the Central Alpine Gotthard Pass, Switzerland, using cosmogenic 10Be and in situ14C surface exposure dating. Combined with mapping of glacial erosional markers, exposure ages of bedrock surfaces reveal progressive glacier downwasting from the maximum LGM ice volume and a gradual reorganization of the paleoflow pattern with a southward migration of the ice divide. Exposure ages of ∼16–14 ka (snow corrected) give evidence for continuous early Lateglacial ice cover and indicate that the first deglaciation was contemporaneous with the decay of the large Gschnitz glacier system. In agreement with published ages from other Alpine passes, these data support the concept of large transection glaciers that persisted in the high Alps after the breakdown of the LGM ice masses in the foreland and possibly decayed as late as the onset of the Bølling warming. A younger group of ages around ∼12–13 ka records the timing of deglaciation following local glacier readvance during the Egesen stadial. Glacial erosional features and the distribution of exposure ages consistently imply that Egesen glaciers were of comparatively small volume and were following a topographically controlled paleoflow pattern. Dating of a boulder close to the pass elevation gives a minimum age of 11.1 ± 0.4 ka for final deglaciation by the end of the Younger Dryas. In situ14C data are overall in good agreement with the 10Be ages and confirm continuous exposure throughout the Holocene. However, in situ14C demonstrates that partial surface shielding, e.g. by snow, has to be incorporated in the exposure age calculations and the model of deglaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An obstacle for establishing the chronology of iron meteorite formation using 182Hf-182W systematics (t1/2 = 8.9 Myr) is to find proper neutron fluence monitors to correct for cosmic ray modification of W isotopic composition. Recent studies showed that siderophile elements such as Pt and Os could serve such a purpose. To test and calibrate these neutron dosimeters, the isotopic compositions of W and Os were measured in a slab of the IID iron meteorite Carbo. This slab has a well-characterized noble gas depth profile reflecting different degrees of shielding to cosmic rays. The results show that W and Os isotopic ratios correlate with distance from the pre-atmospheric center. Negative correlations, barely resolved within error, were found between epsilo190Os-epsilo189Os and epsilo186Os-epsilo189Os with slopes of -0.64 ± 0.45 and -1.8(+1.9/-2.1), respectively. These Os isotope correlations broadly agree with model predictions for capture of secondary neutrons produced by cosmic ray irradiation and results reported previously for other groups of iron meteorites. Correlations were also found between epsilo182W-epsilo189Os (slope = 1.02 ± 0.37) and epsilo182W-epsilo190Os (slope = -1.38 ± 0.58). Intercepts of these two correlations yield pre-exposure epsilo182W values of -3.32 ± 0.51 and -3.62 ± 0.23, respectively (weighted average epsilo182W = -3.57 ± 0.21). This value relies on a large extrapolation leading to a large uncertainty but gives a metal-silicate segregation age of -0.5 ± 2.4 Myr after formation of the solar system. Combining the iron meteorite measurements with simulations of cosmogenic effects in iron meteorites, equations are presented to calculate and correct for cosmogenic effects on 182W using Os isotopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

20.00% 20.00%

Publicador: